Current knowledge on the concentration of Airborne Nanoparticles in outdoor areas #### Nanomaterial: A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm - 100 nm (European Commission recommendation2011/696/EU) #### What does it look like? Transmission electron microscopy TEM (a, b, and c) images of prepared mesoporous SILICA NANOPARTICLES with mean outer diameter: (a) 20nm, (b) 45nm, and (c) 80nm. Scanning electron microscope SEM (d) image corresponding to (b) ### Where do they come from? #### Natural sources - Mineral dust - Sea spray aerosols - Biogenic emissions - Volcanic eruptions - Lightning #### Anthropogenic sources - Traffic - Industrial activities - Coal burning - Biomass burning - Food cooking - Garbage burning - Tobacco - Fireworks A.I. Calvo et al., 2013 ## * like * nanomonitor #### Natural sources #### 1- Mineral dust The main mechanism for producing small dust particles is sandblasting from saltating particles #### Origin: - Deserts - Dry lake beds - Semi-arid surfaces #### **Regulation Factors:** - Wind Speed - Precipitation - Soil surface - Soil moisture - Vegetation cover #### 2- Sea spray aerosols Marine aerosol is the most important aerosol fraction worldwide. Primary marine aerosols are formed by the eruption of rising bubbles through the sea-surface microlayer #### Main regulation factor: Wind Speed #### 3- Volcanic eruptions #### 3- Volcanic eruptions - 1-2 x 10⁹ kg of SO₂ per eruption can be released to the atmosphere, becoming a sulphate aerosol precursor (Corradini et al., 2010, Haywood et al, 2010) - Al, Si, S, Cl, K, Ca, Ti,Mn, Fe, Cu, and Zn are part of its chemical composition (Allard et al., 2000) - On average, volcanoes and geothermal activities release about $9x10^4$ Kg yr⁻¹ of mercury to the atmosphere (Mason 2009) #### 4- Lightning - It is an important source of NO_x (NO and NO_2) in the atmosphere, which made lightning a source of secondary natural nitrate particles (Schumann and Huntrieser, 2007) - An estimated value of about 5 x 10⁹ Kg (N) yr⁻¹ has been widely accepted for lightning N production #### 5- Biogenic emissions - Pollen - Fern spores - Fungal spores - Small fragments and excretions from: plants, animals, bacteria, viruses, carbohydrates, proteins, waxes or ions ## * like * nanomonitor ### Anthropogenic sources #### 1- Traffic #### Road traffic Exhaust and non-exhaust sources (particles from brake wear, tyre wear, catalytic converters, road surface abrasion and resuspension in the wake of passing traffic), contribute approximately equal amounts to the total traffic-related emissions (Querol et al. 2014) | Heavy duty vehicles | 20730×10^{13} nanoparticles vehicle $^{-1}$ km $^{-1*}$ | |-------------------------------|--| | Light duty vehicles | $2-70~x~10^{13}$ nanoparticles vehicle $^{-1}$ km $^{-1*}$ | | Road-tyre interface emissions | $3.7-32~x~10^{11}$ nanoparticles vehicle $^{-1}$ km $^{-1**}$ | ### Anthropogenic sources #### Railway traffic - Rail-wheel interaction makes iron particles predominat (67%) - Aluminium and calcium particles coming from the abrasion of the gravel bed and the resuspension of mineral dust contribute 23% and 10% (Lorenzo et al., 2006) ## Anthropogenic sources #### Air and maritime traffic - Air traffic contibutes to the emissions with BC, OC, NO_x and SO_x . Moreover, aircraft engines are emitters of metal particles (Al, Ti, Cr, Fe, Ni, and Ba) - Ships release SO_2 (16% of the global sulphur emissions) (Corbett and Fischbeck, 1997), NO_x (~70 g NO_x kg⁻¹ of fuel burned) and carbonaceous particulate matter (1.33 x 10⁸ Kg yr⁻¹) (Lack et al., 2007; Gaffney and Marley, 2009) ## * like * nanomonitor ## Anthropogenic sources #### 2- Industrial activities There is a wide range of industrial activities emitting to the atmosphere particulate matter or precursors of particles #### Emitted particles depend on: - Production process - Technology - Raw materials used Main elements associated to every activity: - Mining operations \longrightarrow As, Cd, Pb - Foundries → Ni, Va, Mn, Cu and SiO₂ in the emitted fly ashes - Steel plants \longrightarrow Fe₂O₃ - Cement plants → CaO - Coal power plants → SiO₂ in the emitted fly ashes - Energy production from fossil fuels - gases acting as aerosol precursors ### Anthropogenic sources #### 3- Coal burning - In developing countries, residential coal combustion plays an important role - Emissions are influenced by factors such as coal maturity, coal combustors or burning conditions - It is an important source of gases and atmospheric particulate matter worldwide ### Anthropogenic sources #### 4- Biomass burning - It includes burning of woodland, pastures and agricultural land after harvesting activities - The aerosols generated by biomass burning consist mainly of carbonaceous compounds, and most of the particles emitted have a count median diameter of 100–150 nm (Badarinath et al., 2009) - It is an important source of gases and atmospheric particulate matter worldwide - Around 38x10⁶ metric tones of PM_{2.5} are emitted per year (Alves et al., 2011) ### Anthropogenic sources #### 4-1- Wildfires Between 80% and 90% of the particles generated by biomass burning has a diameter smaller than 1 µm (Alonso-Blanco et al., 2012) Their characteristics will depend on: - Type of fuel - Humidity - Combustion phase - Wind conditions ## Anthropogenic sources #### 4-2- Domestic biomass burning In winter, especially in rural sites, a considerable number of household stoves are used having an important potential to contribute to atmospheric pollution #### Emissions will depend on: - Stove design - Operating conditions - Combustion conditions - Species of wood (Johansson et al., 2003) ### Anthropogenic sources #### 4-3- Agricultural burning The burning of agricultural crop residues in fields represents a regular part of the annual agricultural activities of farmers worldwide and is considered the fourth most important type of global biomass burning #### **Emissions estimation:** • 500 x 106 metric tons of dry matter per year (Andreae and Merlet, 2001; Bond et al., 2004) • 13 g of particulate matter and 19 g of NO_x per kg of burnt dry cereal waste (Ortiz de Zárate et al., 2000) ## Anthropogenic sources #### 5- Food cooking It is another major source of particles in urban areas and cover from ultrafine to coarse range #### Main emission factors: - Cooking temperature - Cooking method - Cooking apliances - Cooking ingredients ## Anthropogenic sources #### 5- Food cooking (See and Balasubramanian, 2008) ## Anthropogenic sources #### 6- Garbage burning #### Garbage composition: - Biomass - Rubber/Leather - Plastic - Glass - Paper - Metals - Textile Garbage burning is not included in most inventories because it is usually illegal. However, roughly half of the garbage generated globally (~10⁹ metric tons yr⁻¹), may be burnt in open fires or incinerators (Christian et al., 2010) ## Anthropogenic sources #### 6- Garbage burning Since garbage acts as an heterogeneous fuel, particles emitted from garbage burning cover a wide range: - PM_{2.5} - Black Carbon - Organic Carbon - Metals (Christian et al. 2010) - Levoglucosan - Mannosan - Galactosan - HCI, which is not observed in biomass burning is registered in important concentrations in garbage burning emissions ## * like * nanomonitor ## Anthropogenic sources #### 7- Tobacco - Environmental tobacco smoke is a complex mixture of gases and particles estimated to contain more than 4000 individual chemical constituents - Fresh undiluted cigarette smoke contains large amounts of potentially toxic nanoparticles <50 nm (Van Dijk WD et al., 2011) - Tobacco is a small source contributing organic fine particulate matter to the outdoor urban atmosphere, being cigarette smoke accounted for about 2.7% of the fine organic aerosol emissions in Los Angeles (Rogge et al., 1994) ### Anthropogenic sources #### 8- Fireworks Although transient, fireworks constitute an important source of gases (ozone, sulphur dioxide, nitrogen oxides), particles (mainly metals: Sr, K, Ba, Co, Pb, Cu) and organic compounds, creating considerably short-term air pollution #### Evaluation of information sources Information has been compiled from more than 50 scientific papers. All of them include measurements of particle concentrations or/and distributions, always covering UFP range ### Data source locations ### **Environments distribution** ## Methodology ## Typical concentrations ## The table shows values for UFP amog other variables obtained in different studies for road urban scenario and its urban background | City (locations) | This study (2012)
(Seoul, Korea) | Westerdahl <i>et al.</i> (2005)
(Los Angeles, USA) | Kittelson <i>et al.</i> (2004a, b)
(New York ^c , Minnesota ^d , USA) | Schneider <i>et al.</i> (2008)
(Aachen, Germany) | | |--------------------------------|-------------------------------------|---|--|---|--| | Roadway average | | | | | | | UFPs (1000 s/cm ³) | | 55–200 (F) ^a | 200–560 (F) ^c | 140 ± 48 (F) | | | | $97 \pm 18 (A)$ | $40 (A)^{b}$ | 160 (A) ^c | $133 \pm 15 (A)$ | | | BC $(\mu g/m^3)$ | | 2.4-20 (F) | | $3.2 \pm 2.5 \; (F)$ | | | | $7.4 \pm 2.5 (A)$ | 1.5 (A) | | $13.6 \pm 3.2 (A)$ | | | PM-PAHs (ng/m ³) | | | | | | | | $98 \pm 28 (A)$ | | | | | | NO_{x} (ppb) | | 230-470 (F) | | | | | | $203 \pm 56 (A)$ | 140 (A) | | | | | NO (ppb) | | 120-470 (F) | 100–240 (F) ^c | | | | | $133 \pm 33 \; (A)$ | 79 (A) | | | | | CO_2 (ppm) | | 800-900 (F) | 400–420 (F) ^c | | | | | $633 \pm 12 \text{ (A)}$ | 720 (A) | | | | | Background | | | | | | | UFPs (1000 s/cm^3) | 60 ± 29 | 14-27 | 9 ^d | | | | BC ($\mu g/m^3$) | 5.4 ± 0.6 | 0.4-1.6 | | 1.5 ± 9.3 | | | PM-PAHs (ng/m³) | 30.6 ± 46.4 | | | | | | NO_{x} (ppb) | 86 ± 67.4 | 35-50 | 15 ^d | | | | NO (ppb) | 51.6 ± 78.0 | 14-19 | | | | | CO ₂ (ppb) | 583.6 ± 10.2 | 368-475 | 364 ^d | | | a indicates "Freeway". b indicates "Arterial roadway", c indicates study in New York, d indicates study in Minnesota. Kim et al., 2015 ## Thanks for your attention!