Project title: # Development of a real-time information and monitoring system to support the risk assessment of engineered nanomaterials (ENMs) under REACH Project Acronym: NanoMONITOR Grant Agreement: LIFE14 ENV/ES/000662 #### Deliverable # DA3. Report on reliable information sources on the concentration of ENMs in industrial, urban and environmental compartments **Dissemintion Level** **Public** / Restricted / Confidential | Document Information | | | | | | | | | | | |----------------------|-------|-------------|--|--|--------|--|--|--|--|--| | Associated action | A3 | | Information gathering and analysis of the existing environmental monitoring data | | | | | | | | | Action Leader | | ITENE | | | | | | | | | | Responsible Au | uthor | Name | | | E-mail | | | | | | | | | Beneficiary | | | Phone | | | | | | | Rev. N° | Date | Author | Beneficiary name | |---------|------|--------|------------------| | 01 | | | | #### PROJECT CONSORTIUM INFORMATION | Beneficiary | Contact | |-------------|---------| |-------------|---------| ITENE (Packaging, Transport & Logistics Research Centre) Carlos Fito cfito@itene.com Maida Domat maida.domat@itene.com AXON Enviro-Group Ltd Athena Progiou ap@axonenviro.gr The Mediterranean Center for Environmental Studies (CEAM) Jose Luis Palau joseluis@ceam.es The REACH Centre Judith Friesl / j.friesl@thereachcentre.com Stella Stoycheva / s.stoycheva@thereachcentre.com ### List of acronyms CES: contributing exposure scenarios ECHA: European Chemicals Agency EHS: Environmental, health and safety ENM: Engineering nanomaterial ES: Exposure scenario NM: nanomaterial OC: Operative conditions RA: Risk Assessment RMM: Risk management measures REACH: Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals #### **Summary** Present deliverable **D.A3.a.** "Report on reliable information sources on the concentration of **ENMs** in industrial, urban and environmental compartments" aims to compile relevant exposure data information sources that should be taken in consideration for exposure information gathering in the context of REACH Regulation to assist risk assessors in order to meet the information requirements upon exposure assessment. It includes: - A description of the methodology used to identify relevant information sources and reliability of data. - A list of identified information sources with indications of which ones are relevant for this purpose. This document will be focused on the definition of the information sources to be employed in the data gathering process, including databases used under the framework of environmental monitoring programs, scientific publication containing measured data on the concentration of ENMs, as well as scientific and technical reports and deliverables published as part of research and development projects. To this end, the most relevant sources of information containing measured data on the concentration of ENMs, as well as relevant contextual data related with the information requirements and criteria defined in action A2 have been identified, and the gathered information compiled into Microsoft® excel spreadsheets, including the complete reference of the source (i.e. author, title, publication year, and abstract), as well as the URL address or direct link to download the source. The classification of the complied sources of information is carried out in terms of relevance for each of the criteria and information requirements stablished within action A2, considering least aspects such as representability of the data included, reliability of the data published concerning the physicochemical properties of the ENMs, with special emphasis on data on the size distribution, particle diameter surface area and surface chemistry, relevance of the route of exposure, including inhalation, dermal and oral exposure, appropriateness of the doses/concentrations tested or identification of the critical parameters for risk assessment purpose within REACH. Around 240 sources of information coming from different kinds of monitoring programs or studies were analysed, obtaining more than 60% of positive evaluation, from which more than 30% are fully reliable and can be used as they are and the rest need additional information to be employed in monitoring of ENM concentration in different environments. ### Table of Contents | 1. | Sco | pe and goal of the deliverable | 5 | |----------|---------|---|----| | 2.
na | | oduction: Required minimum information and quality of data to estimate exposterials | | | | 2.1. Ad | ccording EC Regulation REACH | 6 | | | 2.2. Ad | ccording to Environmental Monitoring Programs | 8 | | | | articular considerations when dealing with environmental exposure data for naterials | 9 | | 3. | Met | thodology | 11 | | | 3.1. | Compilation of information sources | 11 | | | 3.2. | Evaluation and classification of the sources | 12 | | 4.
er | | rces of information on the concentration of ENMs in industrial, urban and nental compartments | 14 | | 5. | Pro | cedure for source reliability determination | 15 | | | 5.1. | Occupational studies | 15 | | | 5.2. | Urban / Rural studies | 16 | | | 5.3. | Environmental studies | 17 | | | 5.4. | Modellization studies | 17 | | 6. | Con | clusions | 18 | | 7. | Ann | nex A | 19 | | 8. | Ann | nex B | 19 | #### 1. Scope and goal of the deliverable Task A3 of the NanoMonitor project deals with the "Information gathering and analysis of the existing environmental monitoring data". Results from this task are presented in two deliverables, DA3a and DA3b, as described below. Present deliverable, DA3a "Report on reliable information sources on the concentration of ENMs in industrial, urban and environmental compartments", is focussed on the definition of a set of reliable exposure information accessible sources, with existing monitored data. These data are intended for using in the exposure estimation in the scope of the exposure assessment when undertaking the Risk Assessment process according REACH Regulation. With that aim, deliverable DA3a worked in the scope of Task A3, is based on the results of the sub-tasks as described below: - Task A.3.1.: Compilation of information sources, in which a thorough compilation of existing information sources on the concentration of nanomaterials in the environmental, urban and industrial compartments was undertaken. - Task A.3.2. Evaluation and classification of the sources, in which a detailed analysis of the necessary considerations for the classification of sources of published measured data as reliable or not was undertaken. The evaluation was done considering the score system developed in task A2 regarding the validity of an existing monitoring data. Most appropriate data sources were selected according the studied aspects. Therefore, present deliverable contains: - A description of the methodology used to identify relevant information sources and reliability of data; - A list of identified information sources with indications of which ones are relevant. In addition, and already in the scope of the Task A.3.3., an analysis and selection of reliable data on the concentration of nanomaterials in industrial, urban and environmental compartments was undertaken. As a result, an inventory of these data was developed, and results presented in deliverable DA3b "Inventory of data on the concentration of ENMs in industrial, urban and environmental compartments", recompiled into Microsoft® Excel spreadsheets. # 2. Introduction: Required minimum information and quality of data to estimate exposure to nanomaterials For risk assessment process, **exposure level** determination is a key step. Release and exposure estimation under REACH aims to quantify the expected exposure when the conditions of use as described in the exposure scenario are implemented. Such quantification enables concluding on whether the risks can be adequately controlled. For each studied scenario, a corresponding exposure data set (for the various environmental compartments or various route of exposure to humans) is to be derived¹. #### 2.1. According EC Regulation REACH The REACH Regulation is the European Union's Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC) No 1907/2006². For ensuring the safety, **REACH Regulation requires** to undertake a **risk assessment of chemicals**. Risk Assessment process is undertaken in three main steps which are: - 1. Hazard assessment: identification and characterization - 2. Exposure assessment: definition of exposure scenarios and exposure estimation - 3. Risk Characterization For each defined exposure scenario, expected exposure when the conditions of use as described in the exposure scenario are implemented is determined for risk characterization. REACH Regulation requires that **existing adequately measured, representative exposure data** are taken into account in the exposure assessment, either on their own or in combination with modelled exposure estimates. Moreover, when dealing with nanomaterials, the use of simulation studies replicating the task or activity of concern should be taken into account when considering the use of measured data, especially taken into account the limitations of modelled estimates for nanomaterials. The risk assessor may then for example make use of monitoring data related to worker's exposure or releases to the environment from for example their own or of well-known customer site-specific information, and also from simulation studies and modelled estimates. Considering that, the hierarchy for the use of exposure data when dealing with nanomaterials would be preferentially³ to use as first option measured data (having quantified key exposure determinants) and when not available, to use appropriate
analogous data, including data derived from simulation studies. As the last option would be to use modelled estimates. ___ ¹ ECHA (2016). Guidance on Information Requirements and Chemical Safety Assessment. Part D: Framework for exposure assessment – Draft Version 2.0 (Public) April 2016. ² Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC (OJ L 396, 30.12.2006). ³ ECHA (2016). Guidance on information requirements and chemical safety assessment. Appendix R14-4 Recommendations for nanomaterials applicable to: Chapter R.14 Occupational exposure estimation. When dealing with occupational and environmental exposure assessment in the context of REACH, sources of measured data which could be used are: - measured data taken under the actual exposure settings for the exposure scenario to be developed (company data). For example, data generated to comply with other legislation or to evaluate the effectiveness of the RMMs in place. Measured data required for site licences and permits (with documented number/frequency of sampling, analytical methods, basic statistics) can be a good source of information for REACH. - exposure information from monitoring databases with regulatory purposes, when information requirements enabling a robust assessment are fulfilled. - Exposure information from peer reviewed publications, when information requirements enabling a robust assessment are fulfilled. - biomonitoring data. - Simulated process data In all cases, it is essential that used documentation is available and referred to in the Chemical Safety Report. In particular, a description of the methodology applied (for measurements/data collection) should be available as well as a reasoning why the data are considered relevant for the release estimation from the specific use/contributing scenario⁴. The information needed to satisfactorily support the suitability and representativeness of the used data, as indicators of good quality, are: - ✓ reference to: quality schemes, standard sampling, and measurement methodologies; - ✓ context: enough description to support the intended scope; - ✓ clear description of monitored tasks; - ✓ clear information on risk management measures in operation during sampling; - ✓ details of duration and frequency of tasks and an assessment if the sampling duration is representative of full-shift exposure or only for the task duration; - ✓ whether data are current rather than historical (i.e. sampling period to be reported); - ✓ collection from a wide range of the sites and processes covered by the use description; - ✓ statistical descriptors available. Even in well-defined situations, available exposure data have substantial variability, and is strongly associated with implemented OC and RMM at the moment of measure. Both, **exposure variability** and representativeness (contextual, spatial, temporal) of the data to the settings to be assessed, need to be taken into account. Measured data variability is reflected by the **spread of the distribution** of the individual exposure data points. This variability may be introduced through a number of factors, which include: differences in application of operational conditions, level of (substance) throughput, other local conditions, variability in performance of RMM, or behavioural differences between workers. ⁴ ECHA (2016). Chapter R.16: Environmental exposure assessment. Version 3.0 – February 2016. **Exposure distributions** can be reasonably described by the **geometric mean** (GM) and the **geometric standard deviation** (GSD). GM estimates the central tendency of the distribution, meanwhile GSD indicates the spread of the distribution. On the other hand, **percentiles** show the percentage of the measured exposure levels that are at or below a certain value (e.g. the 90th percentile value indicates that 90% of the measured exposure levels are at or below that value). In general, the 90th percentile value of a distribution within a generally suitable dataset (i.e. a dataset corresponding to the conditions described in a contributing scenario) should be used as the exposure value for the risk characterisation. Under particular conditions, other percentiles may be applicable as well but a justification should be provided. High values as well as values under the detection limit should remain in the distribution unless there is a reasonable justification from the assessor. Finally, when appropriate representative measured data are not available for the substance, an alternative is the use of measured data for analogous substances, always when the analogous substances have close enough physicochemical properties, or from analogous situations, a similar enough task, with justification, providing an appropriately conservative outcome. A higher level of suitability, representativeness and quality of data shall be provided for higher concerns of hazard of the substance. #### 2.2. According to Environmental Monitoring Programs Monitoring data is composed of numerical data and associated information, often referred to as meta-data^{iError! Marcador no definido}. **Fundamental metadata** required to support the monitoring data includes: - o the target chemical, - o analytical method and performance information for the analysis; - sampling protocol; - sampling location and time; - o information on the nature of the sample; - o other relevant information Although some monitoring data are available, being collected for regulatory purposes or in the scope of different R&D&i projects, there exist several shortcomings for using them in exposure assessment and modelling purposes (application, calibration, validation), especially when dealing with chemicals substances at the nanoscale. The most **common critical deficiencies** related to the available current data are: - Lack of information on the context in which the data were generated and clear objectives of the monitoring programme: representativeness (location, duration, frequency), address temporal variability of sources and system dynamics; - The quality of data is not indicated and cannot be traced; - Data presented are aggregated and raw data cannot be obtained; - It is not clear whether the monitoring *data represent* hot spots or are representative of background conditions; The identification of the target chemical limit of detection and limit of quantification (defined by analytical method); sampling location and sampling time and frequency, are key elements for using the data confidently for exposure assessment^{iError! Marcador no definido.} Thus, it is highly recommended that these meta-data elements are collected when comparing data compiled from different sources. Quality assurance and quality control are important for high quality monitoring data. Key elements in assuring the quality of monitoring data are: utilising reference materials; conducting inter-laboratory studies; and reporting the quality assurance procedures used to collect the data⁵⁶. ## 2.3. Particular considerations when dealing with environmental exposure data for nanomaterials Apart from existing natural and accidentally produced nanomaterials, the production, use and disposal of engineered nanomaterials leads to the release of nanomaterials to the environment (industrial, urban and environment compartments) along their life-cycle. But nowadays, the exact amount of nanomaterials present in such compartments is not totally clear. Measurement of the concentration of exposure to nanomaterials provides particular challenges. These include mainly the discrimination from background particles, collection and analysis of size information, effective high spatial and temporal variability, choice of metrics and measurement instruments, and measurement of high aspect ratio nanomaterials⁷. Other problems are related with: - Hugh variety of existing nanomaterials (no grouping consensus) - Lack of well stablished reference materials - Not existent complete standardized protocols for calculation of stream concentration - Not existent standardized measurement units for all nanomaterials: at least mass concentration (mg m⁻³), but where possible also particle number (units m⁻³) and/or surface area (m² m⁻³) are given. The metric used to assess exposure to nanomaterials should be that which most closely links to any potential health effect. - Not existent sensible and specific analytical methods neither techniques which can probe nanomaterials speciation The state of knowledge on these issues is in constant development and shall be taken into account when using measured exposure data. Taking into account that limitations, different exposure data generating methods exists giving relevant environmental exposure data for nanomaterials. These methods can be divided into the three categories: analytical methods *in situ*; simulation (pilot and laboratory scale studies) measurements and extrapolations; material mass flow analysis and simple models; _ ⁵ UNEP (2004). Guidance for a Global Monitoring Program on Persistent Organic Pollutants, 1st Ed., UNEP. ⁶ UNEP (2007). Guidance on the Global Monitoring Plan for Persistent Organic Pollutants, Preliminary version, amended in May 2007. ⁷ ECHA (2016). Guidance on Information Requirements and Chemical Safety Assessment. Part D: Framework for exposure assessment – Draft Version 2.0 (Public) April 2016. probabilistic mass flow analysis; and kinetic modelling⁸ ⁹. Up to date, different analytical measuring techniques are available in order to provide data on the concentrations of nanomaterials the environment. Techniques
for measuring ultrafine particles and nanoparticles in air are most developed. Different works already investigates nanomaterials in water samples but still fewer work has been focused at nanomaterials concentration determination in sludge and soils. Different simulation studies at laboratory/pilot plant scale have been undertaken in order to study the fate and behaviour of nanomaterials in different scenarios, and thus aiming to validate the analytical procedures for nanomaterials determination in different matrixes⁹. Regarding methods for modelling exposure to nanomaterials, probabilistic mass flow analysis treats the different parameters in the model as distributions. On the other hand, the computer simulations Monte Carlo and Markov Chain Monte Carlo are intended to generate estimates of sediment and groundwater concentration and also of emissions from production, manufacturing and recycling processes of nanomaterials and nanoproducts. Finally, kinetic models are those which specifically intends to reflect the dynamic behaviour and fate of nanomaterials in environmental compartments⁸. - ⁸ Milieu Ltd (2012). Final Report Environmental Exposure to Nanomaterials – Data Scoping Study. Service Contract No.07.0307/2011/610874/ETU/D.3 ⁹ ECHA (2012). Guidance on information requirements and chemical safety assessment. Appendix R14-4 Recommendations for nanomaterials applicable to Chapter R.14 Occupational exposure estimation #### 3. Methodology In order to work on the compilation and analysis of available information of the concentration of ENMs in industrial facilities, urban environments and relevant ecosystems, a throughout collection and review of the relevant sources of information, including relevant databases containing information on the concentration of particulate matter, scientific publications and published reports from project related with the scope of the project must be accomplished. Due to the quantity of information to be processed, some selection and classification criteria must be established and followed. #### 3.1. Compilation of information sources This task was focused on the definition of the information sources to be employed in the data gathering process of the exposure assessment according REACH Regulation, including databases used under the framework of environmental monitoring programs, scientific publication containing measured data on the concentration of nanomaterials, as well as scientific and technical reports and deliverables published as part of research and development projects. To this end, there were identified the most relevant sources of information containing measured data on the concentration of ENMs, as well as relevant contextual data related with the information requirements and criteria defined in action A2. Once identified, the information was compiled into Microsoft® Excel spreadsheets, including the different field to complete reference of the source (i.e. author, title, publication year, and abstract), as well as the URL address or direct link to download the source). In order to define which information sources could be within the scope of the project, some criteria were defined and followed. The sources must contain verified information on the main parameters to be provided to the competent authority for the safe monitoring of NMs and nanoproducts. Thus, before applying the quality criteria of action A2, a pre-selection of sources is applied which requires a minimal set of meta information, such as the origin of the data set (governmental agency, research center, project outcomes...), publication year and scope or aim of the information compilation. Once this information is available, the source is classified attending to some priority criteria: most recent studies are ranked before older ones, likewise, official studies form governmental bodies, universities or research organisms are given higher importance than individual studies. The completeness of the data set is also taken into account, finished studies, conclusive reports or updated datasets are ranked in first order. Regarding the types of sources, several formats are analyzed: - Books or book chapters - Peer reviewed publications in scientific journals - Conference papers and communications - White papers / protocols /guidance - Databases from research or official monitoring bodies - PhDs or other kinds of research work - Reports from project outcomes In this sense, the base of data is formed by the most official or contrasted data sets, coming from official bodies or peer reviewed publications in order to confirm their reliability. Afterwards, protocols, white papers, book chapters and PhD theses are included, and finally the conference papers and reports from projects, since results can be not contrasted or completed. Concerning the scope of the datasets, it is searched within all the scenarios of coverage of the project, that is, human exposure in industrial, environmental and urban environments and the release of materials and NMs to the three environmental compartments: water, air and soil, considering besides in all cases natural, incidental or intentional occurrence. One important aspect, but not determinant for the inclusion of the dataset into the repository, is the availability of the information: whether it has public access or not, and similarly, the metadata extraction possibilities. While the first case, not being public access databases is not cause of exclusion of the compilation, the difficulty of extraction of the metadata could cause a degradation on reliability and quality classification of the dataset. Based on the previous criteria, a repository of almost 250 different sources of datasets related with the concentration of ENMs in industrial, urban and environmental compartments is gathered and classified. #### 3.2. Evaluation and classification of the sources After the first filter and selection of datasets, it must be worked on the classification of the sources of information complied in the previous task, identifying the main databases, scientific publication and reports for each compartment addressed within the project and assessing their completeness and reliability. To achieve such objective, each of the sources were characterized in terms of relevance for each of the criteria and information requirements stablished within action A2. Each of the sources were evaluated, considering at least the following aspects: - Representativity of the data included. - Reliability of the data published concerning the physicochemical properties of the ENMs, with special emphasis on data on the size distribution, particle diameter surface area and surface chemistry. - o Relevance of the route of exposure, including inhalation, dermal and oral exposure - o Appropriateness of the doses/concentrations tested - o Identification of the critical parameters for risk assessment purpose within REACH The evaluation will be conducted following a score systems based on the adequacy of the data included to the quality criteria defined in action A2. In accordance to previous outcomes, it is stated that **existing adequately measured, representative** exposure data can be taken into account in the exposure assessment, either on their own or in combination with modelled exposure estimates¹⁰. The adequateness of the data is stated by a series of characteristics related with: ¹⁰ REACH, Annex I Section 5.2.5. - Measured data taken under the actual exposure settings for the exposure scenario. It requires information such number/frequency of sampling, analytical methods, basic statistics. - Exposure information from **monitoring databases** with regulatory purposes, when information requirements enabling a robust assessment are fulfilled. - Exposure information from **peer reviewed publications**, when information requirements enabling a robust assessment are fulfilled. - **Biomonitoring data** (data from samples of living organisms (biota) may be used. In all cases, it is essential that some basical quality criteria are fulfilled to use the existing dataset, which were selected and listed in DA2a and DA2b. Some of the main metadata from the dataset that must be present are: - Objective of the programme - Particulate and scenario - Analytical method - Units - Limit of detection and quantification (LOD/LOQ) - Background concentration - Recovery - Accuracy and Reproducibility - Sampling protocol details - One shot or mean - Location - Date and time of sampling - Matrix characteristics - Analytical method - Proximity and influence of sources - Discharge emission pattern and volume - Flow and dilution of water body sampled - Description of statistical evaluation of results However, some problems arise when combining or comparing data from different databases, some of them related with the data quality: in many cases monitoring programmes/databases have no classification of data reliability; thus the importance of the application of the quality criteria for classification of sources. Another issue is related with the locations and periods of measurement of the sources: same process or NM in different countries, locations, laboratories or periods of time could lead to erroneous correlation of results, therefore clearly state date, time and location is important to follow the evolution of a monitorized data. An aspect that is seldom if ever taken into account is the changes of instrumentation over time, either in the same dataset for long time trends (change of batteries, liquid feeding in case of CPCs or waste or decalibration of internal gears) or due to evolution of measurement instruments wih the outcome of new models and updates, which difficult the comparability of older measurements with recently ones. This is also related with the differences in sampling methods, units, correction methods, etc; either inter-instrumental and/or inter-procedural. Thus, there is a need for information to understand and categorize
the main emission sources (e.g. diffuse, point, wide dispersive) and measuring procedures. Some actions and efforts that can be carried out in order to overcome the previous issues are related with the consistency of followed methodology and performance characteristics (e.g. precision, accuracy, sensitivity), try to follow a similarity of monitoring and sampling strategy, and state a consistency of units and reporting format, trying to group the data sources among these criteria in order to allow wider and reliable comparability. # 4. Sources of information on the concentration of ENMs in industrial, urban and environmental compartments In order to find the most recent and complete data sources of exposure of particulate material, and specially nanomaterial, several tools were employed in the process of analysis, which are listed in the Table 1, along with some of their descriptive characteristics, such whether it provides public access to its results, if is nano-specific and a brief analysis of some of their pros- and cons- for the application within the scope of the project. Table 1: Tools and databases employed to search for sources of information. | | | Free | employed to search for sources of inform | | | |--|-------------------------|--------|--|--|---| | Database | Specification | Access | Scope | Pros | Limitations | | ACTRIS | General | Yes | Datasets | Easy access and visualization on maps | | | CaNanoLab | Nanobiomedicine | Yes | Protocols, material characterization and literature | · | | | CEINT protocols | Protocols nanomaterials | Yes | Protocols for testing nanomaterials | | Limited at the moment | | Eionet
Reporting
Obligations
Database (ROD) | General | Yes | Repository of air quality information from EU Member States and other EEA member and co-operating countries, submitted according to Directives 2004/107/EC and 2008/50/EC. | | Some reports out of date | | EPO | General | Yes | Patents: Europe | | | | Espacenet | General | Yes | Patents: Spain and LATIPAT | | | | European Soil
Data Centre
(ESDAC) | General | No | Datasets, libraries,
models, publications | | Only soil | | Google Patents | General | Yes | Patents: Only US at the moment | | | | Google Scholar | General | Yes | Papers, letters, notes, reviews, books | If the pdf is freely accessible, it is shown | -Difficult to
organize searches,
usually organized
by Google | | InterNano | Nanomaterials | Yes | Processes | -Data extracted in the database | -Very specific | | Nanomaterial
Registry | Nanomaterials | Yes | Nanomaterials
characterization | | Only physico-
chemical
characterization | | NBI
knowledgebase | Nanomaterials | Yes | Nanomaterials and biological interaction | -Data extracted in the database | | | Database | Specification | Free
Access | Scope | Pros | Limitations | |------------------------------|---------------|----------------|--|--|---| | NHECD | Nanomaterials | Yes | Papers, letters, notes, reviews, books | -Database shows what kind of data is interesting from the health, safety and environmental point of view -Data extracted in the database | Not completely
actualized | | PubMed | General | Yes | Papers, letters, notes, reviews, books | | | | Reaxys | General | No | Papers, letters, notes, reviews, books | Search by drawing
(organic and
organometalic
molecules) | Centred in papers for chemists | | SCIFinder | General | No | Papers, letters, notes, reviews, books | Search by drawing
(organic and
organometalic
molecules) | Centred in papers for chemists | | Scopus | General | No | Papers, letters, notes, reviews, books | | | | USPTO | General | Yes | Patents: US | | | | Web of
Knowledge
(WoK) | General | No | Papers, letters, notes, reviews, books | | -Only peer- reviewed journals -Missing papers from newest journals (important in nanoworld) | | WIPO
Patentscope | General | Yes | Patents: WO and
LATIPAT, EPO, ARIPO
and some countries | | | | WISE | General | No | Models, projects and reports | | For water bodies | Based on these search tools and repositories, the information sources found to be employed in the data gathering process include databases used under the framework of environmental monitoring programs, scientific publications containing measured data on the concentration of ENMs, as well as scientific and technical reports and deliverables published as part of research and development projects. All the references were compiled in detail in an Excel sheet which is attached to this document, along with its main properties, URL and classification, although in Table 2 in <u>Annex B</u> can be found a summary of these sources sorted by publication type, year of release and complete reference. Following the selection criteria from previous section, there were found: - 144 peer reviewed publications in form of articles and scientific papers, - 61 databases or repositories containing datasets on particulate matter, ENMs, air, soil or water quality or human exposure, - 21 reports from project outcomes, NGOs or official bodies, - 5 books related with the monitorization of nanoparticles, - 2 PhD theses, - 2 white papers, modelling tools or protocol reports, - 3 Modelling tools. Each of the data sources was classified according to the environment being monitored, as it was scored in the action **A2**, that is: - Occupational (worker) - o Indoor - o Outdoor - Urban /Rural - o Indoor - o Outdoor - Environmental - Air - o Water - o Soil - Modellization It must be taken into account that the same source could be analysing more than one kind of scenario, for example, the same study covering release of NPs measured and modelled in occupational surroundings and their spread to the neighbour environmental compartments through the life cycle would encompass 6 types of situations. The results of the classification are shown in Figure 1, where the distribution of the urban, occupational and environmental scenarios is rather equitable, although in general the studies are focused on the airborne NMs and indoor occupational studies are the most popular. Figure 1: Classification of the data sources based on the type of scenario monitored. This is probably due to several factors: workers are the first link of the chain in contact with the NMs, even to its bulk form. Also the inhalation is the preferred route of entrance of the NPs to the body^{11,12}, and the air the main way of transport of released NPs to other compartments. Likewise, the instrumentation necessary to measure airborne nanoparticles can provide results in real time, contrary to the measuring devices for water and soil, which require further treatment. Finally, despite the lack of specific legislation regarding NPs, the companies are interested in controlling the incidental and intentional releases, thus their participation in projects of monitoring rate is higher. Consequently, the popularity of these studies. Regarding the kind of publication most prevalent within each category of setting, in Figure 2 can be seen a representation. It must be taken into account again that some types cover more than one category, thus they are counted repeatedly. Figure 2: Ranking of the type of data source depending on their origin. Scientific articles are the most common mean of publication of data regarding occupational and modelling studies, while the urban and environmental compartments are preferably monitored continuously through environmental programs which store results in databases. The number of reports, either form project outcomes or official bodies are similar in all fields, meaning that all the fields are similarly covered, but perhaps that other means of dissemination are preferred. The list will be continuously revised and updated until the end of the project, since, as shown in the graph at the right, there has been a steep increase of studies in this field in the last 10 years, although their production is not constant. 1. ¹¹ D.E. Evans, L.A. Turkevich, C.T. Roettgers, G.J. Deye, P.A. Baron, Dustiness of fine and nanoscale powders, Ann. Occup. Hyg. 57 (2013) 261–277. ¹² D. Stephenson, G. Seshadri, J.M. Veranth, Workplace exposure to submicron particle mass and number concentrations from manual arc welding of carbon steel, Aiha J. 64 (2003) 516–521. #### 5. Procedure for source reliability determination Within REACH is required that **existing adequately measured**, **representative exposure data** are taken into account in the exposure assessment, either on their own or in combination with modelled exposure estimates. With the aim of providing reliable datasets and sources, collected data are sorted according to the requisites of information and data quality given by REACH Regulation (for measured exposure concentrations use) and main monitoring programs (for generated measured data incorporation in the databases). To achieve such classification of the complied sources of information, each of the sources is characterized in terms of relevance for each of the criteria and information requirements stablished within action **A2**. Each of the sources has been evaluated considering at least the following aspects: - Representativity of the data included. - Consistency of the data published concerning the physicochemical properties of the ENMs, with special emphasis on data on the size
distribution, particle diameter surface area and surface chemistry. - Relevance of the route of exposure, including inhalation, dermal and oral exposure. - Appropriateness of the doses/concentrations tested. - Identification of the critical parameters for risk assessment purpose within REACH. The evaluation has been conducted following a score systems based on the adequacy of the data included to the quality criteria defined in the Excel tool "Reliability Assessment for Exposure Data.xIsm" from action A2, extracting the background meta-information from each source in order to pass the test tool and obtain a reliability classification, shown by colours in the last column of Table 2 from Annex B and indicating the following: | Classification | Classification Explanation | | | | | | | |-------------------------|--|--|--|--|--|--|--| | NO VALID | Indicates that fundamental information is missing to ensure
the completeness and reliability of the data set, and the data
are weak or inconsistent to be used as part of a study. | | | | | | | | VALID WITH RESTRICTIONS | Complementary information would be required to ensure the completeness of the data. | | | | | | | | VALID | The data is reliable and complete and can be used with confidence within the REACH context to estimate the PEC or PNEL. | | | | | | | From the 238 datasets analyzed, it was found that 103 were catalogued within the "No Valid" classification score, 104 of them are "Valid With Restrictions", mainly due to the lack of morphological studies or the solely use of models, and the remaining 31 datasets are completely reliable, being classified as "Valid" following the scoring system stated in action A2 of the NanoMonitor project. Thus, the use of data for comparison with recent measurements must be subject to this classification. ### 5.1. Occupational studies As stated previously, the occupational environment is the most largely studied, especially in indoor locations. From the 126 studies covering the workers' exposure to ENMs, 94 are inside TENER AMONITOR Deliverable DA2- the company, and only 32 outside. In Figure 3 can be seen the classification of the reliability these studies attending to the meta-information accompanying on them. Figure 3: Scoring of the studies related to occupational exposure. In both cases, for the majority of studies more information would be necessary, normally regarding to morphological analysis and chemical speciation of the NMs in focus, but also due to the use of models to predict results, which is performed in 8 of the cases. In any case, the ratio of fully reliable studies is rather high and can be used directly without any further consideration. #### 5.2. Urban / Rural studies In the case of studies in the urban /rural areas, most of them are related with traffic emissions, thus they are performed outdoors. In Figure 4 can be seen the number of these studies classified by reliability, being the big majority not fully consistent due to again the lack of morphological information of the NMs and the use of modelled data, which are not qualitative but quantitative. Figure 4: Scoring of the studies related to urban /rural exposure. #### 5.3. Environmental studies Most of the environmental studies are performed from governmental or official bodies, which create platforms to continuously monitor the levels of different gases (see Figure 2), climatic conditions and particulate matter, mainly in the atmosphere as can be seen in Figure 5 but also the quality of water bodies and soil. Figure 5: Scoring of the studies related to environmental exposure. Similarly to the previous cases, since the long-term monitoring studies require autonomy of the measurement devices, morphological studies are seldom carried out, thus the completeness of the meta-information is compromised a the majority of the datasets are classified within the yellow band. #### 5.4. Modellization studies The case of the studies based on models and modelling tools was analyzed in action A2, where it was deduced that due to the quantitative nature of the results and the lack of defined ranges of precision of the outcomes, the classification nof results due to sololy modelling would not achieve the fully reliability and not fall into the "green zone". Thus, the classification of data sets from this kind of data is shown in Figure 6: Scoring of the studies performed by modelling. Page **17 | 55** #### 6. Conclusions In the present deliverable DA3a "Report on reliable information sources on the concentration of ENMs in industrial, urban and environmental compartments", a throughout compilation of available sources of information such as datasets, scientific publications and project reports is carried out. More than hundred references were extracted from scientific publications, project outcomes, official institutions' reports or databases, and mined and classified the information regarding to particulate matter and specially nanoparticle monitoring mainly on air, but also on other environmental and industrial and urban compartments. Subsequently, it was undertaken an analysis of the necessary considerations for the reliability classification of sources of measured data on the concentration of nanomaterials in the environmental, urban and industrial compartments. These classification was assumed considering the requisites stated previously in the project and applying to the metainformation of the datasets. The result of the classification is that 14% of the sources are completely reliable as they are, while 47% of them would need additional information to be fully consistent, being classified as valid with restrictions. On the other hand, 39% of the sources have fundamental information missing, thus completeness and reliability of the data set cannot be guaranteed, and the data are weak or inconsistent to be used as part of a study. In any case, results from the analysis are positive, since more than half of the sources analysed (58,3%) can be used up to some extent for comparability and completeness of the mapping of the particulate matter and nanoparticle monitoring through different locations and scenarios in Europe. Regardless of the classification, quantitative data from all the previous sources will be extracted and compiled identifying relevant information on the concentration of ENMs in industrial, urban and natural environments in the next task of the action A3. Data gathered will be structured and organized following the structure required by REACH, as well as relevant standardized structures for reporting air quality information, such as NASA Ames Format for Data Exchange, or the Air Quality Data Exchange Module (DEM), WebDab and EBAS data reporting formats, key databases for using measured data in the evaluation of the impacts of pollutants in the environment. #### 7. Annex A #### 8. Annex B Table 2 summarizing the outcomes from the Excel Sheet gathering and classification. | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|--|------|----------------|--|---------|-----------|---------------|----------------------------| | Measurements of
the physical
properties of
particles in the
urban atmosphere | Roy M.
Harrison,
Marcus Jones,
Gareth Collins | 1999 | Article | Atmosp
heric
Environ
ment | 33 | | 309-
321 | Valid With
Restrictions | | Concentration of
ultrafine, fine and
PM 2,5 particles in
three European
cities | J. Ruuskanen,
th. Tuch, H.
Ten Brink, A.
Peters, A.
Khlystov, A.
Mirme, G.P.A.
Kos, B.
Brunekreef,
H.E.
Wichmann, G.
Buzorius, M.
Vallius, W.G.
Kreyling, J.
Pekkanen | 2001 | Article | Atmosp
heric
Environ
ment | 35 | | 3729-
3738 | Valid With
Restrictions | | Nanoparticles: An occupational hygiene review | R.J. Aitken, K.S.
Creely, C.L.
Tran | 2004 | Report | | | | | No Valid | | Exposure to carbon nanotube material: aerosol release during the handling of unrefined singlewalled carbon nanotube material | Maynard AD,
Baron PA,
Foley M,
Shvedova AA,
Kisin ER,
Castranova V | 2004 | Article | Journal
of
Toxicol
ogy
Environ
mental
Health | 67 | 1 | 87-
107 | Valid With
Restrictions | | Characterization of
urban and rural
organic particulate
in the Lower fraser
Valley using two
Aerodyne Aerosol
Mass Spectrometers | M. Rami Alfarra, Hugh coe, James D. Allan, Keith N. Bower, Hacene Boudries, Manjula R. Canagaratna, Jose L. Jimenez, John T. Jayne, Arthur A. Garforth, Shao- Meng Li, Douglas R. Worsnop | 2004 | Article | Atmosp
heric
Environ
ment | 38 | | 5745-
5758 | Valid With
Restrictions | | What concentrations of | Nicole Müller | 2007 | Thesis | | | | | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|---|------|----------------|--|---------|-----------|---------------|----------------------------| | nano
titanium
dioxide, carbon
nanotubes and
nano silver are we
exposed to? | | | | | | | | | | Emission of
ultrafine copper
particles by
universal motors
controlled by phase
angle modulation | Wilfried
Szymczak,
Norbert
Menzel, Lothar
Keck | 2007 | Article | Aerosol
Science | 38 | | 520-
531 | No Valid | | Ultrafine Aerosol
Emission from the
Free Fall of TiO2 and
SiO2 Nanopowders | N. Ibaseta and
B. Biscans | 2007 | Article | KONA Powder and Particle Journal | 25 | | 190-
194 | No Valid | | Particle
concentration and
characteristics near
a major freeway
with heavy-duty
diesel traffic | Leonidas
Ntziachristos,
Zhi Ning,
Michael D.
Geller,
Constantinos
Sioutas | 2007 | Article | Environ
mental
Science
and
Technol
ogy | 41 | | 2223-
2230 | Valid With
Restrictions | | Indoor air quality
for chemical and
ultrafine particle
contaminants from
printers | Naoki Kagi,
Shuji Fujii,
Youhei Horiba,
Norikazu
Namiki, Yoshio
Ohtani, Hitoshi
Emi, Hajime
Tamura, Yong
Shik Kim | 2007 | Article | Building
and
Environ
ment | 42 | | 1949-
1954 | Valid With
Restrictions | | Potential occupational exposure to manufactured nanoparticles in Italy | Fabio Boccuni,
Bruna
Rondinone,
Carlo Petyx,
Sergio Iavicoli | 2008 | Article | Journal
of
Cleaner
Product
ion | 16 | | 949-
956 | No Valid | | Temporal Evolution
of Nanoparticle
Aerosols in
Workplace Exposure | M.
Seipenbusch,
A. Binder, G.
Kasper | 2008 | Article | The Annals Occupa tional Hygiene | 52 | 8 | 707-
716 | No Valid | | Effectiveness of Local Exhaust Ventilation in Controlling Engineered Nanomaterial Emissions During Reactor Cleanout Operations | Mark M.
Methner | 2008 | Article | Journal
of
Occupa
tional
and
Environ
mental
Hygiene | 5 | | 63-69 | Valid With
Restrictions | | Exposure to manufactured nanostructured | Evangelia
Demou,
Philippe Peter, | 2008 | Article | The
Annals
Occupa | 52 | 8 | 695-
706 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------|----------------|---|---------|-----------|---------------|----------------------------| | particles in an industrial pilot plant | Stefanie
Hellweg | | | tional
Hygiene | | | | | | Characterization of
Airborne Particles
During Production
of Carbonaceous
Nanomaterials | Behnoush
Yeganeh,
Christy M. Kull,
Matthew S.
Hull, Linsey C.
Marr | 2008 | Article | Environ
mental
Science
and
Technol
ogy | 42 | | 4600-
4606 | Valid With
Restrictions | | Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure | Fujitani Y.,
Kobayashi T.,
Arashidani K.,
Kunugita N.,
Suemura K. | 2008 | Article | Journal of Occupa tional Environ mental Hygiene | 5 | 6 | 380-
389 | Valid | | Particle exposure
levels during CVD
growth and
subsequent
handling of
vertically-aligned
carbon nanotube
films | Dhimiter Bello, A. John Hart, Kwangseong Ahn, Marilyn Hallock, Namiko Yamamoto, Enrique J. García, Michael J. Ellenbecker, Brian L. Wardle | 2008 | Article | Carbon | 46 | | 974-
981 | Valid | | Airborne Nanoparticle Release Associated with the Compounding of Nanocomposites using Nanoalumina as Fillers | Su-Jung Tsai,
Ali Ashter, Earl
Ada, Joey L.
Mead, Carol F.
Barry, Michael
J. Ellenbecker | 2008 | Article | Aerosol
and Air
Quality
Researc
h | | | | Valid With
Restrictions | | Synthetic TiO2
nanoparticle
emission from
exterior facades
into the aquatic
environment | R. Kaegi, A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt, M. Boller | 2008 | Article | Environ
mental
Pollutio
n | 15
6 | | 233-
239 | No Valid | | Sampling and Analysis of Nanomaterials in the Environment: A State-of-the-Science Review | Eastern
Research
Group Inc. | 2008 | Report | | | | | No Valid | | Nanomaterials:
Risks and Benefits | Igor Linkow,
Jeffery
Steevens | 2009 | Book | NATO
Science
for
Peace
and | | | | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|---|------|----------------|---|---------|-----------|---------------|----------------------------| | | | | | Security Series C: Environ mental Security | | | | | | Characterization of exposure to silver nanoparticles in a manufacturing facility | Junsu Park, Byoung Kyu Kwak, Eunjoo Bae, Jeongjin Lee, Younghun Kim, Kyunghee Choi, Jongheop Yi | 2009 | Article | Journal
of
Nanopa
rticle
Researc
h | 11 | | 1705-
1712 | No Valid | | Workplace
exposure to
nanoparticles | Simon Kaluza, Judith Kleine Balderhaar, Bruno Orthen, Bertrand Honnert, Elzbieta Jankowska, Piotr Pietrowski, Maria Gracia Rosell, Celia Tanarro, José Tejedor, Agurtzane Zugasti | 2009 | Report | Agencia
Europe
a de
Segurid
ad y
Salud
en el
Trabajo | | | | No Valid | | Sanding dust from
nanoparticle-
containing paints:
physical
characterisation | I.K. Koponen,
K.A. Jensen, T.
Schneider | 2009 | Article | Journal
of
Physics | | | | No Valid | | Nanoparticles
monitoring in
workplaces devoted
to nanotechnologies | Laura
Manodori,
Alvise
Benedetti | 2009 | Article | Journal
of
Physics | 17
0 | | | Valid With
Restrictions | | Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes | Dhimiter Bello, Brian L. Wardle, Namiko Yamamoto, Roberto Guzman deVilloria, Enrique J. Garcia, Anastasios J. Hart, Kwangseong Ahn, Michael J. Ellenbecker, Marilyn Hallock | 2009 | Article | Journal
of
Nanopa
rticle
Researc
h | 11 | | 231-
249 | Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------|--------------------|---|---------|---------------------------|-------------|----------------------------| | Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety | T.M. Peters, S.
Elzey, R.
Johnson, H.
Park, V.H.
Grassian, T.
Maher, P.
O'shaughnessy | 2009 | Article | Journal
of
Occupa
tional
Environ
mental
Hygiene | 6 | 2 | 73-81 | Valid With
Restrictions | | Characterization
and Evaluation of
Nanoparticle
Release during the
Synthesis of Single-
Walled and
Multiwalled Carbon
Nanotubes by
Chemical Vapor
Deposition | Su-Jung, Mario
Hofmann,
Marilyn
Hallock,
Michael
Ellenbecker | 2009 | Article | Environ
mental
Science
and
Technol
ogy | 43 | 60
17
-
60
23 | | Valid With
Restrictions | | Measurement of nanoparticle removal by abrasion | Arnaud Guiot,
Luana
Golanski,
François Tardif | 2009 | Article | Journal
of
Physics | 17
0 | 1 | | Valid With
Restrictions | | Workplace
exposure to
engineered
nanoparticles | Sabine Plitzko | 2009 | Article | Inhalati
on
Toxicol
ogy | 21 | S1 | 25-29 | Valid | | Occupational exposure assessment for nanoparticles | Ji Young Park | 2009 | Thesis | | | | | Valid With
Restrictions | | Ultrafine Particle
Characteristics in
Seven Industrial
Plants | Karine Elihn,
Peter Berg | 2009 | Article | The Annals Occupa tional Hygiene | 53 | 5 | 475-
484 | Valid With
Restrictions | | Workplace
exposure at
nanomaterial
production
processes | Carsten
Möhlmann,
Johannes
Welter, Martin
Klenke, Jürgen
Sander | 2009 | Article | Journal
of
Physics | 17
0 | | | Valid | | Exposure to manufactured nanoparticles in different workplaces | Derk Brouwer | 2010 | Article:
Review | Toxicol
ogy | 26
9 | | 120-
127 | Valid With
Restrictions | | Exposure assessment of carbon nanotube manufacturing workplaces | Ji Hyun Lee,
Seung-Bok Lee,
Gwi Nam Bae,
Ki Soo Jeon, Jin
Uk Yoon, Jun
Ho Ji, Jae
Hyuck Sung,
Byung Gyu Lee,
Jong Han Lee,
Jung Sun yang, | 2010 | Article | Inhalati
on
Toxicol
ogy | 22 | 5 | 369-
381 | Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|--|------|----------------
--|---------|-----------|---------------|----------------------------| | | Hyeon Yeong
Kim, Chang Soo
Kang, Il Je Yu | | | | | | | | | Nanoparticles-
containing spray can
aerosol:
characterization,
exposure
assessment, and
generator design | Bean T. Chen,
Aliakbar
Afshari, Samuel
Stone, Mark
Jackson, Diane
Schwegler-
Berry, David G.
Frazer, Vincent
Castranova,
Treye A.
Thomas | 2010 | Article | Inhalati
on
Toxicol
ogy | 22 | 13 | 1072-
1082 | No Valid | | Aerosol Monitoring
during Carbon
Nanofiber
Production: Mobile
Direct-Reading
Sampling | Douglas E.
Evans, Bon Ki
Ku, M. Eileen
Birch, Kevin H.
Dunn | 2010 | Article | The
Annals
Occupa
tional
Hygiene | 54 | 5 | 514-
531 | Valid With
Restrictions | | Characterizing Exposures to Airborne Metals and Nanoparticle Emissions in a Refinery | Arthur Miller,
Pamela L.
Drake, Patrick
Hintz, Matt
Habjan | 2010 | Article | The
Annals
Occupa
tional
Hygiene | | | 001-
10 | Valid With
Restrictions | | Ultrafine particles
at three different
sampling locations
in Taiwan | Sheng-Chien
Chen, Chuen-
Jinn Tsai,
Charles CK.
Chou, Gwo-
Dong Roam,
Sen-Sung
Cheng, Ya-Nan
Wang | 2010 | Article | Atmosp
heric
Environ
ment | 44 | | 533-
540 | Valid With
Restrictions | | NBI knowledgebase | ONAMI & Oregon State University. | 2010 | Database | | | | | No Valid | | Engineered nanomaterials in rivers - Exposure scenarios for Switzerland at high spatial and temporal resolution | F. Gottschalk,
C. Ort, R.W.
Scholz, B.
Nowack | 2011 | Article | Environ
mental
Pollutio
n | 15
9 | | 3439-
3445 | No Valid | | Nanoparticle
exposure at
nanotechnology
workplaces: A
review | Thomas A.J. Kuhlbusch, Christof Asbach, Heinz Fissan, Daniel Göhler, Michael Stintz | 2011 | Article | Particle
and
Fibre
Toxicol
ogy | 8 | 22 | | No Valid | | Characterization
and Control of
Airborne Particles
emitted During | Lorenzo G.
Cena, Thomas
M. Peters | 2011 | Article | Journal
of
Occupa
tional | 8 | 2 | 86-92 | Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|---|------|----------------|---|---------|-----------|---------------|----------------------------| | Production of
Epoxy/Carbon
Nanotube
Nanocomposites | | | | Environ
mental
Hygiene | | | | | | Potential for exposure to engineered nanoparticles from nanotechnology-based consumer spray products | Yevgen
Nazarenko,
Huajun Zhen,
Taewon Han,
Paul J. Lioy,
Gediminas
Mainelis | 2011 | Article | Journal of Exposur e Science and Environ mantal Epidemi ology | 21 | | 515-
528 | No Valid | | Estimation of surface area concentration of workplace incidental nanoparticles based on number and mass concentrations | J.Y. Park, G.
Ramachandran | 2011 | Article | Journal
of
Nanopa
rticle
Researc
h | 13 | | 4897-
4911 | Valid With
Restrictions | | Exposure assessment of workplaces manufacturing nanosized TiO2 and silver | Ji Hyun Lee,
Miran Kwon,
Jun Ho Ji,
Chang Soo
Kang, Kang Ho
Ahn, Jeong Hee
Han, Je Yu | 2011 | Article | Inhalati
on
Toxicol
ogy | 23 | 4 | 226-
236 | Valid | | Exposure
assessment of nano-
sized and respirable
particles at different
workplaces | Chuen-Jinn Tsai, Cheng-Yu Huang, Sheng- Chieh Chen, Chi-En Ho, Cheng-Hsiung Huang, Chun- Wan Chen, Cheng-Ping Chang, Su-Jung Tsai, Michael J. Ellenbecker | 2011 | Article | Jounal
of
Nanopa
rticle
Researc
h | 13 | | 4161-
4172 | Valid With
Restrictions | | Exposure and Emissions Monitoring during Carbon Nanofiber Production - Part I: Elemental Carbon and Iron - Soot Aerosols | M. Eileen
Birch, Bon-Ki
Ku, Douglas E.
Evans, toni A.
Ruda-Eberenz | 2011 | Article | The
Annals
Occupa
tional
Hygiene | 55 | 9 | 1016-
1036 | Valid | | Comparison of dust released from sanding conventional and nanoparticle-doped | Ismo Kalevi
Koponen, Keld
Alstrup Jensen,
Thomas
Schneider | 2011 | Article | Journal
of
Exposur
e
Science
and | 21 | | 408-
418 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|---|------|----------------|--|----------------|-----------|-------------|----------------------------| | wall and wood coatings | | | | Environ
mantal
Epidemi
ology | | | | | | Nanoparticles from
Printer Emissions in
Workplace | | 2011 | Report | | | | | Valid With
Restrictions | | Life cycle
assessment of
engineered
nanomaterials:
State of the art and
strategies to
overcome existing
gaps | Roland
Hischier,
Tobias Walser | 2012 | Article | Science
of the
Total
Environ
ment | 42
5 | | 271-
282 | No Valid | | Potential for
Inhalation Exposure
to engineered
Nanoparticles from
Nanotechnology-
Based Cosmetic
Powders | Yevgen
Nazarenko,
Huajun Zhen,
Taewon Han,
Paul J. Lioy,
Gediminas
Mainelis | 2012 | Article | Environ
mental
health
perspec
tives | 12
0 | 6 | 885-
592 | No Valid | | Task-based exposure assessment of nanoparticles in the workplace | Seunghon Ham, Chungsik Yoon, Euiseung Lee, Kiyoung lee, Donguk Park, Eunkyo Chung, Pilje Kim, Byoungcheun Lee | 2012 | Article | Journal
of
Nanopa
rticle
Researc
h | 14 | 9 | | Valid | | Workplace exposure to naoparticles and the application of provisional nanoreference values in times of uncertain risks | Pieter van
Browkhuizen,
Fleur van
Broekhuizen,
Ralf
Cornelissen,
Lucas Reijnders | 2012 | Article | Journal
of
Nanopa
rticle
Researc
h | 14 | 4 | | Valid With
Restrictions | | Potential Scenarios
for Nanomaterial
Release and
subsequent
Alteration in the
environment | Bernd Nowack, James F. Ranville, Stephen Diamond, Julian A. Gallego, Chris Metcalfe, jerome Rose, Nina Horne, Albert A. Koelmans, Stephen J. Klaine | 2012 | Article | Environ
mental
Toxicol
ogy and
Chemist
ry | 31 | 1 | 50-59 | No Valid | | Exposure to CeO2 nanoparticles | Maija
Leppänen, Jussi | 2012 | Article | Nanoto xicology | 6 | 6 | 643-
651 | Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------|--------------------|---|---------|-----------|-------------|----------------------------| | during flame spray
process | Lyyränen,
Merja Jävelä,
Ari Auvinen,
Jorma
Jokiniemi, Joe
Pimenoff, Timo
Tuomi | | | | | | | | | Final Report: Environmental Exposure to Nanomaterials - Data Scoping Study | Milieu Ltd | 2012 | Report | | | | | No Valid | | Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles | Ji Hyun Lee,
Kangho Ahn,
Sun Man Kim,
Ki Soo Jeon,
Jong Seong
Lee, Il Je Yu | 2012 | Article | Journal
of
Nanopa
rticle
Researc
h | 14 | | | Valid With
Restrictions | | Industrial worker exposure to airborne particles during the packing of pigment and nanoscale titanium dioxide | A.J. Koivisto, J.
Lyyränen, A.
Auvinen, e.
Vanhala, K.
Hämeri, T.
Tuomi, J.
Jokiniemi | 2012 | Article | Inhalati
on
Toxicol
ogy | 24 | 12 | 839-
849 | Valid With
Restrictions | | Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighbourhood over the course of a year | Luz T. Padró
Martínez,
Allison P.
Patton, Jeffrey
B. Trull, Wig
Zamore, Doug
Brugge, John L.
Durant | 2012 | Article | Atmosp
heric
Environ
ment | 61 | | 253-
264 | Valid With
Restrictions | | Environmental concentrations of engineered nanomaterials: Review of modelling and analytical studies | Fadri
Gottschalk,
Tian Yin Sun,
Bernd Nowack | 2013 | Article:
Review | Environ
mental
Pollutio
n | 18
1 | | 287-
300 | No Valid | | An Occupational Exposure Assessment for Engineered Nanoparticles Used in Semiconductor Fabrication | Michele Noble
Shepard, Sara
Brenner | 2013 | Article | The
Annals
Occupa
tional
Hygiene | 58 | 2 | 251-
265 | No Valid | | Global life cycle releases of engineered nanomaterials | Arturo A. Keller, Suzanne McFerran, Anastasiya Lazareva, Sangwon Suh | 2013 | Article | Journal
of
Nanopa
rticle
Researc
h | 15 | 6 | | No Valid | | Characterization and control of occupational | Maximilien
Debia, Charles
Beaudry, Scott | 2013 | Report | Chemic
al
Susbsta | | | | Valid With
Restrictions | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION |
--|--|------|-----------------|---|---------------------------|-----------|-------------|----------------------------| | exposure to
nanoparticles and
ultrafine particles | Weichenthal,
Robert Tardif,
André
Dufresne | | | nces and Biologic al Agents - Studies and Researc h Projects | | | | | | Characterization of exposures to nanoscale particles and fibres during solid core drilling of hybrid carbon nanotube advanced composites | Dhimiter Bello,
Brian L.
Wardle, Jie
Zhang, Namiko
Yamamoto,
Christopher
Santeufemio,
Marilyn
Hallock, M.
Abbas Virji | 2013 | Article | Internat ional Journal of Occupa tional and Environ mental Health | 16 | 4 | 434-
450 | Valid | | Elastic CNT-
polyurethane
nanocomposite:
synthesis,
performance and
assessment of
fragments released
during use | Wendel Wohlleben, Matthias W. Meier, Sandra Vogel, Robert Landsiedel, Gerhard Cox, Sabine hirth, Zeljko Tomovic | 2013 | Article | Nanosc
ale | 5 | | 369-
380 | No Valid | | Atmospheric
nanoparticles and
their impacts on
public health | Klara
Slezakova,
Simone
Morais, Maria
do Carmo
Pereira | 2013 | Book
Chapter | Current
Topics
in
Public
Health | Ch
ap
te
r
23 | | | Valid With
Restrictions | | Commission for the
Investigation of
Health Hazards of
Chemical
Compounds in the
Work Area | Deutsche
Forschungsge
meinschaft | 2013 | Report | | | | | Valid With
Restrictions | | Exposure assessments of nanoparticles in aquatic environments - considerations, review and recommendations | Swedish
Chemicals
Agency | 2013 | Report | | | | | No Valid | | Building exposure
scenarios for safety
management of
engineered
nanomaterials | Lucie Sikorova,
Martie Van
Tongeren,
Pavel
Danihelka,
Araceli Sánchez | 2014 | Article | Nanoco
n | | | | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|--|------|----------------|--|---------|-----------|---------------|----------------------------| | | Jiménez, Sarka
Bernatikova | | | | | | | | | Application of a quantitative weight of evidence approach for ranking and prioritising occupational exposure scenarios for titanium dioxide and carbon nanomaterials | Danail R. Hristozov, Stefania Gottardo, Marco Cinelli, Panagiotis Isigonis, Alex Zabeo, Andrea Critto, Martie Van Tongeren, Lang Tran, Antonio Marcomini | 2014 | Article | Nanoto
xicology | 8 | 2 | 117-
131 | No Valid | | Framework for LCI modelling of releases of manufactured nanomaterials along their life cycle | Roland Hischier | 2014 | Article | The Internat ional Journal of Life Cycle Assess ment | 19 | 4 | 838-
849 | No Valid | | Comparison of nanoparticle exposures between fumed and sol-gel nano-silica manufacturing facilities | Sewan OH,
Boowook KIM,
Hyunwook KIM | 2014 | Article | Industri
al
Health | 52 | | 190-
198 | Valid With
Restrictions | | The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities | Farhad Azarmi,
Prashant
Kumar, Mike
Mulheron | 2014 | Article | Journal
of
Hazard
ous
Materia
Is | 27
9 | | 268-
279 | Valid With
Restrictions | | Assessment of nanoparticle exposure in nanosilica handling process: including characteristics of nanoparticles leaking from a vacuum cleaner | Boowook KIM,
Hyunwook
KIM, II Je YU | 2014 | Article | Industri
al
Health | 52 | | 152-
162 | Valid With
Restrictions | | Range-Finding Risk
Assessment of
Inhalation Exposure
to Nanodiamonds in
a Laboratory
Environment | Antii J. Koivisto, Jaana E. Palomäki, Anna Kaisa Viitenen, Kirsi M. siivola, Ismo k. Koponen, Mingzhou Yu, Tomi S. Kanerva, | 2014 | Article | Internat ional Journal of Environ mental Researc h and Public Health | 11 | 5 | 5382-
5402 | Valid With
Restrictions | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|---|------|--------------------|---|---------|-----------|-------------|----------------------------| | | Hannu Norppa,
Harri T.
Alenius, Tareq
Hussein, Kai M.
Savolainen,
Kaarle J.
Hämeri | | | | | | | | | Are there generalizable trends in the release of airborne synthetic clay nanoparticles from a jet milling process? | Ehsan Majd Faghihi, Darren Martin, Samuel Clifford, Grant Edwards, Congrong He, Christof Asbach, Lidia Morawska | 2015 | Article | Aerosol
and Air
Quality
Researc
h | 15 | | 365-
375 | Valid With
Restrictions | | Occupational exposure to nanoparticles at commercial photocopy centers | Jonh Martin, Dhimiter Bello, Kristin Bunker, Martin Shafer, David Christiani, Susan Woskie, Philip Demokritou | 2015 | Article | Journal
of
Hazard
ous
Materia
Is | 29
8 | | 351-
360 | Valid With
Restrictions | | Measurement of
nanoscale TiO2 and
Al2O3 in industrial
workplace
environments -
methodology and
results | Heinz
Kaminski,
Mathias Beyer,
Heinz Fissan,
Christof
Asbach,
Thomas A.J.
Kuhlbusch | 2015 | Article | Aerosol
and Air
Quality
Researc
h | 15 | | 129-
141 | Valid With
Restrictions | | Research and
development -
where people are
exposed to
nanomaterials | Chantal Imhof,
Katherine
Clark, Thierry
Meyer, Kaspar
Schmid,
Michael
Riediker | 2015 | Article | Journal
of
Occupa
tional
Health | 57 | | 179-
188 | Valid With
Restrictions | | Exposure to nanomaterials from the Danish Environment | Poul bo Larsen,
Jesper Kjolholt | 2015 | Project
Reports | | | | | Valid With
Restrictions | | Exposure
assessment of
nanomaterials in
consumer products | Poul Bo Larsen,
Frans
Christensen,
Keld Alstrup
Jensen, Anna
Brinch, Sonja
Hagen
Mikkelsen | 2015 | Project
Reports | | | | | No Valid | | Occupational Exposure to Airborne Nanomaterials: An | Sara A.
Brenner, Nicole
M. Neu-Baker,
Cihan | 2015 | Article | Journal
of
Occupa
tional | 12 | | 469-
481 | Valid With
Restrictions | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|---|------|----------------|--|---------|-----------|---------------------|----------------------------| | Assessment of Worker Exposure to Aerosolized Metal Oxide Nanoparticles in Semiconductor Wastewater Treatment | Caglayan, Igor
G. Zurbenko | | | and
Environ
mental
Hygiene | | | | | | Influence of relative humidity and physical load during storage on dustiness of inorganic nanomaterials: implications for testing and risk assessment | Marcus Levin, Elena Rojas, Esa Vanhala, Minnamari Vippola, Biase Liguori, Kirsten i. Kling, Ismo K. Koponen, Kristian Molhave, Timo Tuomi, Danijela Gregurec, Sergio Moya, Keld A. Jensen | 2015 | Article | Journal
of
Nanopa
rticle
Researc
h | 17 | 8 | | Valid With
Restrictions | | Characterization of engineered TiO2 nanomaterials in a life cycle and risk assessments perspective | Véronique
Adam,
Stéphanie
Loyaux-
Lawniczak,
Gaetana
Quaranta | 2015 | Article | Environ
mental
Science
and
Pollutio
n
Researc
h | 22 | | 11175
-
11192 | No Valid | | Workplace exposure to airborne alumina nanoparticles associated with separation and packaging processes in a pilot factory | Mingluan Xing,
Hua Zou,
Xiangjing Gao,
Bing Chang,
Shichuan Tang,
Meibian Zhang | 2015 | Article | Environ
mental
Science
Process
es &
Impacts | 17 | | 656-
666 | Valid | | Cellulose nanomaterials: life cycle risk assessment, and environmental health and safety roadmap | Jo Anne
Shatkin, Baram
Kim | 2015 | Article | Environ
mental
Science
Nano | 2 | | 477-
499 | No Valid | | Consumer exposures to laser printer-emitted engineered nanoparticles: A case study of life- cycle implications from nano-enabled products | Sandra V. Pirela, Georgios A. Sotiriou, Dhimiter Bello, Martin Shafer, Kristin Lee Bunker, Vincent Castranova, Treye Thomas, | 2015 | Article | Nanoto
xicology | 9 | 6 | 760-
768 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION |
--|---|------|--------------------|--|---------|-----------|-------------|----------------------------| | | Philip
Demokritou | | | | | | | | | Nanotechnology
and Environmental
Health Laboratories | Association of
Public Health
Laboratories | 2015 | White
Paper | Associa
tion of
Public
Health
Laborat
ories | | | | No Valid | | Determination of nanoscale particles in the air of working zone at the metallurgical production | T.S. Ulanova,
M.V.
antipyeva, M.I.
Zabirova, M.V.
Volkova | 2015 | Article | Journal
"Health
Risk
Analysis
" | | 1 | 63-66 | Valid With
Restrictions | | Strategi for the lowering and the assessment of exposure to nanoparticles at workspace - Case of study concerning the potential emission of nanoparticles of Lead in an epitaxy laboratory | Sébastien Artous, Eric Zimmermann, Paul-Antoine Douissard, Dominique Locatelli, Sylvie Motellier, Samir Derrough | 2015 | Article | Journal
of
Physics | 61
7 | | | No Valid | | Process-generated nanoparticles from ceramic tile sinteering: Emissions, exposure and environmental release | A.S. Fonseca, A. Maragkidou, M. Viana, X. Querol, K. Hämeri, I. de Francisco, C. Estepa, C. Borrell, V. Lennikov, G.F. de la Fuente | 2016 | Article | Science
of the
Total
Environ
ment | 56
5 | | 922-
932 | Valid | | Airborne engineered nanomaterials in the workplace - a review of release and worker exposure during nanomaterial production and handling processes | Yaobo Ding, Thomas A.J. Kuhlbusch, Martie Van Tongeren, Araceli Sánchez Jiménez, Ilse Tuinman, Rui Chen, Iñigo Larraza Álvarez, Urszula Mikolajczyk, Carmen Nickel, Jessica Meyer, Heinz Kaminsky, Wendel Wohlleben, Burkhard | 2016 | Article:
Review | Journal
of
Hazard
ous
Materia
Is | | | | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------------------------|----------------------|--|----------------|-----------|---------------|----------------------| | | Stahlmecke,
Simon
Clavaguera,
Michael
Riediker | | | | | | | | | Systematic design analysis and risk management on nanoparticles occupational exposure | Francisco Silva,
Pedro Arezes,
Paul Swuste | 2016 | Article | Journal
of
Cleaner
Product
ion | 11
2 | | 3331-
3341 | No Valid | | Current scenarios of
biomedical aspect
of metal-based
nanoparticles on gel
dosimetry | Deena Titus, E. James Jebaseelan Samuel, Selvaraj Mohana Roopan | 2016 | Article | Applied
Microbi
ology
and
Biotech
nology | 10
0 | | 4803-
4816 | No Valid | | Exposure Scenarios
in the Workplace
and Risk
Assessment of
Carbon
Nanomaterials | Rui Chen,
Chunying
Chem | 2016 | Book
Chapter | Biomed ical Applicat ions and Toxicol ogy of Carbon Nanom aterials | | | 515-
534 | No Valid | | Comparative modeling of exposure to airborne nanoparticles released by consumer spray products | Christian
Riebeling,
Andreas Luch,
Mario Enrico
Götz | 2016 | Article | Nanoto
xicology | 10 | 3 | 343-
351 | No Valid | | Measuring the Size
of Nanoparticles in
Aqueous Media
Using Batch-Mode
Dynamic Light
Scattering | V.A. Hackley,
J.D. Clogston | 2007
(rev.2
015) | Protocol | NIST Special Publicat ion, NIST- NCL Joint Assay Protoco | 12
00
-6 | | | No Valid | | NANEX | | | Database | | | | | No Valid | | NHECD CEINT protocols | | | Database
Database | | | | | No Valid
No Valid | | Nanomaterial
Registry | U.S. Department of Health & Human Services - National | | Database | | | | | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |-------------|--|------|----------------|---------|---------|-----------|-----|----------------------------| | | Institutes of
Health | | | | | | | | | CaNanoLab | U.S. Department of Health & Human Services - National Cancer Institute | | Database | | | | | No Valid | | InterNano | National Science Foundation CMMI- 1025020, Center for Hierarchical Manufacturing | | Database | | | | | Valid With
Restrictions | | AirBase | European Environmental Agency (EEA); EUROAIRNET- European Air Quality monitoring and information network (Managed by the European Topic Centre on Air Quality) | | Database | | | | | Valid With
Restrictions | | NILU | Database
hosted by the
Software group
of the
Norwegian
Institute for Air
Research
(NILU) | | Database | | | | | Valid With
Restrictions | | WebDab | EMEP -
European
Monitoring and
Evaluation
Programme | | Database | | | | | Valid With
Restrictions | | EBAS | EMEP -
European
Monitoring and
Evaluation
Programme | | Database | | | | | Valid With
Restrictions | | GHO / ENHIS | WHO
programme on
Air Quality and
Health | | Database | | | | | Valid With
Restrictions | | АМАР | Arctic
Monitoring and
Assessment | | Database | | | | | Valid With
Restrictions | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---------------------------------|--|------|----------------|---------|---------|-----------|-----|----------------------------| | | Programme
(AMAP) | | | | | | | | | AEMET | Monitoring
program of the
AEMET
Meteorological
Agency | | Database | | | | | Valid With
Restrictions | | SEPA | National Swedish Environemntal Monitoring Programme | | Database | | | | | Valid With
Restrictions | | NERI | The Danish air quality monitoring programme | | Database | | | | | Valid With
Restrictions | | ASPA | Assotiation pour la sourveillance et l'Etude de la Pollution Atmospherique en Alsacie | | Database | | | | | Valid With
Restrictions | | Qualitat de l'aire a
Andorra | Govern
d'Andorra | | Database | | | | | Valid With
Restrictions | | GAINS | IIASA -
Atmospheric
Pollution
Programme -
International
Institute for
Applied
Systems
Analysis | | Model
tool | | | | | No Valid | | irCELine | Belgian
Interregional
Environment
Agency (IRCEL -
CELINE) | | Database | | | | | Valid With
Restrictions | | SLB analys | Stockholm -
Uppsala
County Air
Quality
Management
Association | | Database | | | | | Valid With
Restrictions | | LUBW / UMEG | Monitoring
program of the
Baden-
Württemberg
State Agency
(LUBW) | | Database | | | | | Valid With
Restrictions | | eNanoMapper | eNanoMapper - A Database and Ontology Framework for Nanomaterials | 2014 | Database | | | | | Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|---------------|--------------------|---------|---------|-----------|-----|----------------------------| | | Design and
Safety
Assessment
(FP7-604134) | | | | | | | | | iNanoTool | European project, (LIFE+2012 Programme) to develop an interactive tool for the implementatio n of environmental legislation in nanoparticle manufacturers. | 2013-
2015 | Project
Reports | | | | | No Valid | | Opensense | OpenSense
project funded
by nano-
tera.ch | 2009-
2013 | Database | | | | | Valid With
Restrictions | | Opensense2 | OpenSensell
project funded
by nano-
tera.ch | 2013-
2017 | Database | | | | | Valid With
Restrictions | | Nanex | Development
of Exposure
Scenarios for
Manufactured
Nanomaterials
(FP7-247794) | 2009-
2010 | Database | | | | | Valid | | Copernicus
(ECMWF) | Copernicus: European Earth observation programme (GMES / Atmosphere) | | Database | | | | | Valid | | MARINA: Managing
Risks on
Nanomaterials | EU Seventh
framework
programme
FP7-263215 | 2011-
2015 | Database | | | | | No Valid | | Nanofate | Seventh Programme for research, technological development and demonstration under grant agreement No CP-FP 247739 NanoFATE | 2010-
2014 | Project
Reports | | | | | Valid | | Sirena | SIRENA-
SIMULATION
OF THE
RELEASE OF | 2013-
2016 | Project
Reports | | | | | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---------------|---|---------------|--------------------|---------|---------|-----------|-----|----------------------------| | | NANOMATERIA
LS FROM
CONSUMER
PRODUCTS
FOR
ENVIRONMENT
AL EXPOSURE
ASSESSMENT
LIFE 11
ENV/ES/596 | | Source | | | ue | | | | NANOTRANSPORT | The Behaviour of Aerosols Released to Ambient Air from Nanoparticle
Manufacturing FP6- 33371 | 2006-
2008 | Project
Reports | | | | | Valid With
Restrictions | | Sun | Sustainable
technologies
project (FP7-
604305) | 2013-
2016 | Project
Reports | | | | | Valid | | SmartNano | Sensitive Measurement, detection and identification of engineered nanoparticles in complex matrices (FP7 - NMP.2011.1.3- 1 - Contract n°280779) | 2012-
2016 | Project
Reports | | | | | No Valid | | NanoMICEX | Mitigation of risk and control of exposure in nanotechnolog y based inks and pigments (FP7-280713) | 2012-
2015 | Project
Reports | | | | | Valid | | GuideNano | Project funded
from the
European
Union's
Seventh
Framework
Programme
(FP7-604387) | 2013-
2017 | Model
tool | | | | | Valid | | Nanosolutions | Biological Foundation for the Safety Classification of Engineered Nanomaterials (ENM): Systems | 2013-
2017 | Model
tool | | | | | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|---|---------------|----------------|---|---------|-----------|-------------|----------------------------| | | Biology Approaches to Understand Interactions of ENM with Living Organisms and the Environment (FP7-309329) | | | | | | | | | Citi-Sense | collaborative project co-funded by the European Union's Seventh Frame-work Programme for Research, Technological Development and Innovation, grant agreement no 308524. | 2012-
2016 | Database | | | | | Valid With
Restrictions | | Working with nanoparticles: Exposure registry and health monitoring | Health Council
of the
Netherlands
(Gezondheidsr
aad) | 2012 | Book | Health Council of the Netherl ands (Gezon dheidsr aad) | | | | Valid | | Measurements of Particle Emissions from Nanotechnology Processes, with Assessment of Measuring Techniques and Workplace Controls | Prof. Lidia
Morawska, Mr
Peter McGarry,
Dr Howard
Morris, Dr Luke
Knibbs, Dr Thor
Bostrom and
Dr Andrea
Capasso | 2012 | Book | The Internat ional Laborat ory for Air Quality and Health, Queens land Universi ty of Technol ogy | | | | Valid | | Elastic CNT-
polyurethane
nanocomposite:
synthesis,
performance and
assessment of | Wendel Wohlleben, Matthias W. Meier, Sandra Vogel, Robert Landsiedel, Gerhard Cox, | 2013 | Article | Nanosc
ale | 5 | | 369-
380 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------|----------------|---|---------|-----------|---------------|----------------------------| | fragments released during use | Sabine hirth,
Zeljko Tomovic | | | | | | | | | Range-Finding Risk
Assessment of
Inhalation Exposure
to Nanodiamonds in
a Laboratory
Environment | Antii J. Koivisto, Jaana E. Palomäki, Anna Kaisa Viitenen, Kirsi M. siivola, Ismo k. Koponen, Mingzhou Yu, Tomi S. Kanerva, Hannu Norppa, Harri T. Alenius, Tareq Hussein, Kai M. Savolainen, Kaarle J. Hämeri | 2014 | Article | Internat
ional
Journal
of
Environ
mental
Researc
h and
Public
Health | 11 | 5 | 5382-
5402 | Valid With
Restrictions | | Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes | Rute F. Domingos, Mohamed A. Baalousha, Yon Ju-Nam, M. Marcia Reid, Nathalie Tufenkji, Jamie R. Lead, Gary G. Leppard, and Kevin J. Wlikinson | 2009 | Article | Environ
mental
Science
and
Technol
ogy | 43 | 19 | 7277-
7284 | No Valid | | The release of engineered nanomaterials to the environment | Gottschalk F.,
Nowack B. | 2011 | Article | Journal
of
Environ
mental
Monito
ring | 13 | | 1145-
1155 | No Valid | | Environmental and
health effects of
nanomaterials in
nanotextiles and
façade coatings | Som C., Wick
P., Krug H.,
Nowack B | 2011 | Article | Environ
ment
Internat
ional | | | | No Valid | | Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health-lessons learned from four case studies | Aschberger K.,
Micheletti C.,
Sokull-Kluttgen
B., Christensen
F.M | 2011 | Article | Environ
ment
Internat
ional | 37 | | 1143-
1156 | No Valid | | Sources and concentration of nanoparticles (<10 | Ji Ping Shi,
Douglas E
Evans, A.A | 2001 | Article | Atmosp
heric
Environ
ment | 35 | 7 | 1193-
1202 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------|----------------|--|---------|-----------|---------------|----------------------------| | nm diameter) in the urban atmosphere | Khan, Roy M
Harrison | | | | | | | | | On-line measurements of diesel nanoparticle composition and volatility | Hiromu Sakurai, Herbert J. Tobias, Kihong Park, Darrick Zarling, Kenneth S. Docherty, David B. Kittelson Peter H. McMurry, Paul J. Ziemann | 2003 | Article | Atmosp
heric
Environ
ment | 37 | 9-
10 | 1199-
1210 | No Valid | | Titanium dioxide nanoparticles: occupational exposure assessment in the photocatalytic paving production | Andrea Spinazzè, Andrea Cattaneo, Marina Limonta, Valentina Bollati, Pier Alberto Bertazzi and Domenico M. Cavallo | 2016 | Article | Jounal
of
Nanopa
rticle
Researc
h | 18 | 6 | | Valid With
Restrictions | | Contribution of indoor-generated particles to residential exposure | C.Isaxon, A. Gudmundson, EZ Nordin, L.Lönnblad, A. Dahl, G. Wieslander, M. Bohgard, A. Wierzbicka | 2015 | Article | Atmosp
heric
Environ
ment | 10
6 | | 458-
466 | No Valid | | Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings | Manuel
Vorbau, Lars
Hillemann,
Michael Stintz | 2009 | Article | Journal
of
Aerosol
Science | 40 | 3 | 209-
217 | No Valid | | New method for the characterization of abrasion-induced nanoparticle release into air from nanomaterials | L.Golanski,
A.Guiot,
D.Braganza
and F.Tardif | 2010 | Article | NSTI-
Nanote
ch | 1 | | 720-
723 | No Valid | | Exposure to engineered nanoparticles: Model and measurements for accident situations in laboratories | Tobias Walser, Stefanie Hellweg, Ronnie Juraske, Norman A. Luechinger, Jing Wang and Martin Fierz | 2012 | Article | Science
of the
Total
Environ
ment | 42
0 | | 119-
126 | Valid With
Restrictions | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------|----------------|---|---------|-----------|---------------|--------------------| | Evaluation of the diffusion size classifier (meDiSC) for the real-time measurement of particle size and number concentration of nanoaerosols in the range 20-700 nm | Bau S., Jacoby
J. and
Witscherg O. | 2012 | Article | Journal
of
Environ
mental
Monito
ring | 14 | | 1014-
1023 | No Valid | | A laboratory study
of the performance
of the handheld
diffusion size
classifier (DiSCmini)
for various aerosols
in the 15-400 nm
range | Bau S.,
Zimmermann
B., Payet R. and
Witscherg O. | 2015 | Article | Environ
mental
Science
s:
Process
es
&Impac
ts | 17 | | 261-
269 | No Valid | | Field measurement
of particle size and
number
concentration with
the Diffusion Size
Classifier (DiSC) | M. Fierz, H.
Burtscher, P.
Steigmeier and
M. Kasper | 2008 | Article | Society
of
Automo
tive
Enginee
rs | | | | No Valid | | Comparative Testing of a Miniature Diffusion Size Classifier to Assess Airborne Ultrafine Particles Under Field Conditions | Reto Meier,
Katherine Clark
and Michael
Riediker | 2013 | Article | Aerosol
Science
and
Technol
ogy | 47 | 1 | 22-28 | No Valid | | Design, Calibration,
and Field
Performance of a
Miniature Diffusion
Size Classifier | M. Fierz, C.
Houle, P.
Steigmeier and
H. Burtscher | 2011 | Article | Aerosol
Science
and
Technol
ogy | 45 | | 1-10 | No Valid | | Monitor for detecting and assessing exposure to airborne nanoparticles | Johan Marra,
Matthias Voetz
and Heinz-
Jürgen Kiesling | 2010 | Article | Journal
of
Nanopa
rticle
Researc
h | 12 | 1 | 21-37 | No Valid | | Using the Aerasense NanoTracer for simultaneously obtaining several ultrafine particle exposure
metrics. | Johan Marra | 2011 | Article | Journal
of
Physics
Confere
nce
Series | 30
4 | 1 | | No Valid | | Comparability of
Portable
Nanoparticle
Exposure Monitors | Christof Asbach, Heinz Kaminski, Daniel von Barany, Thomas A.J. Kuhlbusch, | 2012 | Article | Annals
in
Occupa
tional
Hygiene | 56 | 5 | 606-
621 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|---|------|--------------------|--|--------------------------|-----------|---------------|----------------------------| | | Christian Monz, Nico Dziurowitz, Johannes Pelzer, Katja Vossen, Knut Berlin, Silvio Dietrich, Uwe Götz, Heinz- Jürgen Kiesling, Rudolf Schiert and Dirk Dahmann | | | | | | | | | Comparison of the DiSCmini Aerosol Monitor to a Handheld Condensation Particle Counter and a Scanning Mobility Particle Sizer for Submicrometer Sodium Chloride and Metal Aerosols | Jessica B. Mills,
Jae Hong Park
and Thomas H.
Peters | 2013 | Article | Journal
of
Occupa
tional
and
Environ
mental
Hygiene | 10 | 5 | 250-
258 | No Valid | | Metrological Performances of a Diffusion Charger Particle Counter for Personal Monitoring | Giorgio
Buonanno,
Rohan E.
Jayaratne, Lidia
Morawska and
Luca Stabile | 2014 | Article | Aerosol
and Air
Quality
Researc
h | 14 | | 156-
167 | No Valid | | Field comparison of portable and stationary instruments for outdoor urban air exposure assessments | M. Viana, I. Rivas, C. Reche, A.S. Fonseca, N. Pérez, X. Querol, A. Alastuey, M. Álvarez- Pedrerol and J. Sunyer | 2015 | Article | Atmosp
heric
Environ
ment | 12
3
Pa
rt
A | | 220-
228 | No Valid | | Influential parameters on particle exposure of pedestrians in urban microenvironments | G. Buonanno,
F.C. Fuoco and
L. Stabile | 2011 | Article | Atmosp
heric
Environ
ment | 45 | | 1434-
1443 | Valid With
Restrictions | | Assessment of
Personal Exposure
to Airborne
Nanomaterials | Christof Asbach, Asmus Meyer-Plath, Simon Clavaguera, Martin Fierz, Dirk Dahmann, Laura MacCalman, Carla Alexander, Ana | 2016 | Project
Reports | Project
nanoln
DEx | | | | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|--|------|----------------|---|---------|-----------|-------------|----------------------------| | | Maria Todea | | | | | | | | | Comparison of four
scanning mobility
particle sizers at the
Fresno Supersite | and Ivo lavicoli John G. Water, Judith C. Chow, David A. Sodeman, Douglas H. Lowenthal, M C. Oliver Chang, Kihong Park, Xiaoliang Wang | 2011 | Article | Particu
ology | 9 | | 204-
209 | Valid With
Restrictions | | Measurements of ultrafine particle size distribution near Rome | Fenjuan Wang,
Francesca
Costabile,
Hong Li, Dong
Fang, Ivo
Alligrini | 2010 | Article | Atmosp
heric
Researc
h | 98 | | 69-77 | Valid With
Restrictions | | Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools | M. Viana, I. Rivas, X. Querol, A. Alastuey, M. Álvarez- Pedrerol, L. Bouso, C. Sioutas and J. Sunyer | 2015 | Article | Atmosp
heric
Environ
ment | 10
6 | | 392-
401 | Valid With
Restrictions | | Development of PM0.1 Personal Sampler for Evaluation of Personal Exposure to Aerosol Nanoparticles | Thunyapet Thongyen, Mitsuhiko Hata, Akira Toriba, Takuji Ikeda, Hiromi Koyama, Yoshio Otani, Masami Furuuchi | 2015 | Article | Aerosol
and Air
Quality
Researc
h | 15 | | 180-
187 | No Valid | | Assessing variations in roadside air quality with sampling height | Stephen
Stratton, David
Hector, David
Sykes, Brian
Stacey, Stuart
Sneddon | 2015 | Report | | | | | Valid With
Restrictions | | Metrological Assessment of a Portable Analyzer for Monitoring the Particle Size Distribution of Ultrafine Particles | Luca Stabile,
Emanuele
Cauda, Sara
Marini and
Giorgio
Buonanno | 2014 | Article | Annals
in
Occupa
tional
Hygiene | 58 | 7 | 860-
876 | No Valid | | Perspectives in
Biological
Monitoring of
Inhaled Nanosized
Particles | Mickael
Rinaldo, Pascal
Andújar, Aude
Lacourt,
Laurent
Martinon, | 2015 | Article | Annals
in
Occupa
tional
Hygiene | 59 | 6 | 669-
680 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------|----------------|--|---------|-----------|-------------|--------------------| | | Mireille Canal
Raffin, Pascal
Dumortier,
Jean-Claude
Pairon and
Patick
Brochard | | | | | | | | | Spatial and temporal variability of incidental nanoparticles in indoor workplaces: impact on the characterization of point source exposures | Jianjun Niu, Pat
E. Rasmussen,
Robert Magee
and Gregory
Nilsson | 2015 | Article | Environ
mental
Science
s:
Process
es &
Impacts | 17 | | 98-
109 | No Valid | | Demonstration of
the equivalence of
PM2.5 and PM10
measurement
methods in Helsinki
2007–2008 | Jari Waldén,
Timo Mäkelä,
Risto Hillamo,
Sisko Laurila
and Minna
Aurela | 2010 | Report | Finnish
Meteor
ological
Institut
e | | | | No Valid | | Nanotechnology:
The Next Big Thing,
or Much Ado about
Nothing? | Andrew D.
Maynard | 2007 | Article | Annals
in
Occupa
tional
Hygiene | 51 | 1 | 1-12 | No Valid | | Estimating Aerosol Surface Area from Number and Mass Concentration Measurements | Andrew D.
Maynard | 2003 | Article | Annals
in
Occupa
tional
Hygiene | 47 | 2 | 123-
144 | No Valid | | Relationships Among Particle Number, Surface Area, and Respirable Mass Concentrations in Automotive Engine Manufacturing | William A. Heitbrink, Douglas E. Evans, Bon Ki Ku, Andrew D. Maynard, Thomas J. Slavin and Thomas M. Peters | 2009 | Article | Journal of Occupa tional and Environ mental Hygiene | 6 | | 19-31 | No Valid | | Lung deposited surface area size distributions of particulate matter in different urban areas | Heino Kuuluvainen, Topi Rönkö, Anssi Järvinen, Sampo Saari, Panu Karjalainen, Tero Lähde, Liisa Pirjola, Jarko V. Niemi, Risto Hillamo, Jorma Keskinen | 2016 | Article | Atmosp
heric
Environ
ment | 13
6 | | 105-
113 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|------|----------------|---|---------|-----------|---------------|----------------------------| | Lung-deposited surface area concentration measurements in selected occupational and non-occupational environments | Otmar Geiss,
Ivana Bianchi,
Josefa Barrero-
Moreno | 2016 | Article | Journal
of
Aerosol
Science | 96 | | 24-37 | Valid With
Restrictions | | Assessment of Two Portable Real-Time Particle Monitors Used in Nanomaterial Workplace Exposure Evaluations | Yuewei Liu,
Catherine C.
Beaucham,
Terri A. Pearce,
Ziqing Zhuang | 2014 | Article | PLoS
One | 9 | 8 | | No Valid | | Evaluation of Quantitative Exposure Assessment Method for Nanomaterials in Mixed Dust Environments: Application in Tire Manufacturing Facilities | Marisa L.
Kreider,
William D.
Cyrs, Melissa A.
Tosiano and
Julie M. Panko | 2015 | Article | Annals
in
Occupa
tional
Hygiene | 59 | 9 | 1122-
1134 | No Valid | | Cutaneous exposure scenarios for engineered nanoparticles used in semiconductor fabrication: a preliminary investigation of workplace surface contamination | Michele Noble
Sheperd and
Sara Brener | 2014 | Article | Internat ional Journal of Occupa tional and Environ mental Health | 20 | 3 | 247-
257 | No Valid | | Particle number size distribution in the eastern Mediterranean: Formation and growth rates of ultrafine airborne atmospheric particles | I. Kopanakis,
S.E.
Chatoutsidou,
K. Torseth, T.
Glytsos and M.
Lazaridis | 2013 | Article | Atmosp
heric
Environ
ment | 77 | | 790-
802 | No Valid | | Experimental Evaluation of a Markov Multizone Model of Particulate Contaminant Transport | Rachel M.
Jones and
Mark Nicas | 2014 | Article | Annals
in
Occupa
tional
Hygiene | 58 | 8 | 1032-
1045 | No Valid | | A comparison of
two nano-sized
particle air filtration
tests in the
diameter range of | Daniel A.
Japuntich, Luke
M.
Franklin,
David Y. Pui,
Thomas H.
Kuehn and | 2007 | Article | Jounal
of
Nanopa
rticle
Researc
h | 9 | 1 | 93-
107 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|---|------|----------------|---|---------|-----------|-------------|----------------------------| | 10 to 400
nanometers | Seom Chang
Kim | | | | | | | | | Experimental Comparison of Two Portable and Real- Time Size Distribution Analysers for Nano/Submicron Aerosol Measurements | Ta-Chih Hsiao,
Yao-Chuan Lee,
Ke-Ching Chen,
Wei-Cheng Ye,
Khajornsak
Sopajaree, Ying
I. Tsai | 2016 | Article | Aerosol
and Air
Quality
Researc
h | 16 | | 919-
929 | No Valid | | Exposure and Emission Measurements During Production, Purification, and Functionalization of Arc-Discharge- Produced Multi- Walled Carbon Nanotubes | Maria Hedmer, Christina Isaxon, Patrick T. Nilsson, Linus Ludvigsson, Maria E. Messing, Johan Genberg, Vidar Skaug, Mats Bohgard, Håkan Tinnerberg and Joakim H. Pagels | 2014 | Article | Annals
in
Occupa
tional
Hygiene | 58 | 3 | 355-
379 | Valid With
Restrictions | | Occupational Exposure Assessment in Carbon Nanotube and Nanofiber Primary and Secondary Nanotube and Nanofiber Primary and Secondary Manufacturers: Mobile Direct- Reading Sampling | Matthew M. Dahm, Douglas E. Evans, Mary K. Schubauer- Berigan, M. Eileen Birch and James A. Deddens | 2012 | Article | Annals
in
Occupa
tional
Hygiene | 57 | 3 | 328-
344 | Valid With
Restrictions | | Personal Exposure to Ultrafine Particles in the Workplace: Exploring Sampling Techniques and Strategies | Derk H.
Brouwer, José
H.J. Gijsbers
and Marc W.H.
Lurvink | 2004 | Article | Annals
in
Occupa
tional
Hygiene | 48 | 5 | 439-
453 | No Valid | | Exposure Limits for
Nanoparticles:
Report of an
International
Workshop on Nano
Reference Values | Pieter van Broekhuizen, Wim Van Veelen, Willem-Henk Streekstra, Paul Schulte and Lucas Reijnders | 2012 | Article | Annals
in
Occupa
tional
Hygiene | 56 | 5 | 515-
524 | No Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|---|------|----------------|--|---------|-----------|---------------|----------------------------| | Comparison
between two
different
nanoparticle size
spectrometers | F. Belosi, S.
Ferrari, V.
Poluzzi, G.
Santachiara
and F. Prodi | 2013 | Article | Journal of the Air & Waste Manage ment Associa tion | 63 | 8 | 918-
925 | No Valid | | A laboratory study
of the performance
of the handheld
diffusion size
classifier (DiSCmini)
for various aerosols
in the 15-400 nm
range | S. Bau, B.
Zimmermann,
R. Payet and O.
Witschger | 2015 | Article | Environ
ment
Science
s:
Process
es &
Impacts | 17 | | 261-
269 | No Valid | | Characteristics of size distributions at urban and rural locations in New York | MS. Bae, J.J.
Schwab, O.
Hogrefe, B.P.
Frank, G.G.
Lala and K.L.
Demerjian | 2010 | Article | Atmosp
heric
Chemist
ry and
Physics | 10 | | 4521-
4535 | No Valid | | A Model of Deposition of Hygroscopic Particles in the Human Lung | B. Asgharian | 2004 | Article | Aerosol
Science
and
Technol
ogy | 38 | | 938-
947 | No Valid | | Estimating number emission rates of nanoparticle sources by "Concentration Peaking" method | S. Anand,
Manish Joshi,
Balvider K.
Sapra, Yelia S.
Mayya | 2016 | Article | Aerosol
and Air
Quality
Researc
h | 16 | | 1541-
1547 | No Valid | | Valencian network
for control and
surveillance of
atmospheric
pollution | Generalitat
Valenciana | | Database | | | | | Valid With
Restrictions | | Community of
Madrid Air Quality
Network | Community of
Madrid | | Database | | | | | Valid With
Restrictions | | Community of
Castilla y León Air
Quality Network | Autonomous
Government of
Castilla y León | | Database | | | | | Valid With
Restrictions | | Community of
Aragón Air Quality
Network | Autonomous
Government of
Aragón | | Database | | | | | Valid With
Restrictions | | Network for
surveillance and
foresight of
atmospheric
pollution | Generalitat de
Catalunya | | Database | | | | | Valid With
Restrictions | | Air Quality (Region of Murcia) | Autonomous
Government of
Murcia | | Database | | | | | Valid With
Restrictions | | Title | Authors / | Year | Type of | Journal | ٧ | Iss | Pag | CLASSIFICA | |-------------------------------|--------------------------------|------|----------|---------|----|-----|-----|----------------------------| | BAsta sestisis Air | Source
Xunta de | | source | | ol | ue | | TION | | Meteogalicia Air
Quality | Galicia | | Database | | | | | Valid With
Restrictions | | Air Quality Network | Government of | | | | | | | | | monitoring | the Principality | | Database | | | | | Valid With | | (Asturias) | of Asturias | | | | | | | Restrictions | | Air Quality in | Government of | | Databasa | | | | | Valid With | | Cantabria | Cantabria | | Database | | | | | Restrictions | | Air Quality in | Basque | | Database | | | | | Valid With | | Euskadi | Government | | Database | | | | | Restrictions | | Network for control | Autonomous | | Database | | | | | Valid With | | and surveillance of | Government of | | | | | | | Restrictions | | Air Quality | Castilla La
Mancha | | Database | | | | | No Valid | | | Autonomous | | | | | | | | | Air Quality in | Government of | | Database | | | | | Valid With | | Andalucía | Andalucía | | | | | | | Restrictions | | Network for | | | | | | | | | | protection and | Government of | | | | | | | Valid With | | research of the Air | Extremadura | | Database | | | | | Restrictions | | Quality in | Extremadara | | | | | | | Trestrictions | | Extremadura | | | | | | | | | | Emissions to the | Government of | | Databasa | | | | | Valid With | | Atmosphere and Air
Quality | Illes Balears | | Database | | | | | Restrictions | | _ | Government of | | | | | | | | | Air Quality (Canary | the Canary | | Database | | | | | Valid With | | Islands) | Islands | | | | | | | Restrictions | | | Government of | | Database | | | | | Valid With | | Air Quality | Navarra | | | | | | | Restrictions | | | | | Database | | | | | No Valid | | Air Quality | Government of | | Database | | | | | Valid With
Restrictions | | European | La Rioja | | | | | | | Restrictions | | Environment | European | | Database | | | | | Valid With | | Agency | Union | | Database | | | | | Restrictions | | Department for | 1112 | | | | | | | N. 12 1 NACCOL | | Environment, Food | UK
government | | Database | | | | | Valid With
Restrictions | | and Rural Affairs | government | | | | | | | Restrictions | | AirNow | US government | | Database | | | | | Valid With | | | | | | | | | | Restrictions | | | LingjiaKong,
Soile Tuomela, | | | | | | | | | NanoMiner — | Lauri Hahne, | | | | | | | | | Integrative Human | Helena Ahlfors, | | | | | | | | | Transcriptomics | Olli Yli-Harja, | 2013 | Article | PLoS | 8 | 7 | | Valid With | | Data Resource for | Bengt Fadeel, | _ | | One | | | | Restrictions | | Nanoparticle
Research | Riitta | | | | | | | | | Nescartii | Lahesmaa and | | | | | | | | | | Reija Autio | | | | | | | | | | K.A. Guzan, | | | Comput | | | | | | Integration of data: | K.C. Mills, V. | | | ational | | | | | | the Nanomaterial | Gupta, D.
Murry, C.N. | 2013 | Article | Science | 6 | 1 | | Valid With | | Registry project and | Scheier, D.A. | 2013 | Aiticle | & | U | _ | | Restrictions | | data curation | Willis and M.L. | | | Technol | | | | | | | Ostraat | | | ogy | | | | | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |--|--|------|----------------|---|---------|-----------|---------------|----------------------------| | Nanoinformatics:
Emerging Databases
and Available Tools | Suresh
Panneerselvam
and Sangdun
Choi | 2014 | Article | Internat
ional
Journal
of
Molecul
ar
Science
s | 15 | | 7158-
7182 | Valid With
Restrictions | | The Nanomaterial Registry: facilitating the sharing and analysis of data in the diverse nanomaterial community | Michele L.
Ostraat,
Karmann C.
Mills, Kimberly
A. Guzan and
Damaris Murry | 2013 | Article | Internat
ional
Journal
of
Nanom
edicine | 8 | 1 | 7-13 | Valid With
Restrictions | | NanoE-Tox: New and in-depth database concerning ecotoxicity of nanomaterials. | Juganson K.,
Ivask A.,
Blinova I.,
Mortimer M.
and Kahru A. | 2015 | Article | Beilstei
n
Journal
of
Nanote
chnolog
y |
6 | | 1788-
1804 | Valid With
Restrictions | | Nanotechnology in
the real world:
Redeveloping the
nanomaterial
consumer products
inventory | Marina E. Vance, Todd Kuiken, Eric P. Vejerano, Sean P. McGinnis, Michael F. Hochellar Jr., Davis Rejeski and Matthew S. Hull | 2015 | Article | Beilstei
n
Journal
of
Nanote
chnolog
y | 6 | | 1769-
1780 | Valid With
Restrictions | | The eNanoMapper
database for
nanomaterial safety
information | N. Jeliazkova, C. Chomenidis, P. Doganis, B. Fadeel, R. Grafström, B. Hardy, J. Hastings, M. Hegi, V. Jeliazkov, N. Kochev, P. Kohonen, C. R. Munteanu, H. Sarimveis, B. Smeets, P. Sopasakis, G. Tsiliki, D. Vorgrimmler and E. Willighagen | 2015 | Article | Beilstei
n
Journal
of
Nanote
chnolog
y | 6 | | 1609-
1634 | Valid | | Environmental impacts of nanomaterials: providing comprehensive | Dana Kühnel,
Clarissa
Marquardt,
Katja Nau,
Harald F. Krug, | 2014 | Article | Environ
mental
Science
Europe | 26 | 21 | | Valid With
Restrictions | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|--|---------------|--------------------|---|---------|-----------|---------------|----------------------------| | information on exposure, transport and ecotoxicity - the project DaNa2.0. | Björn Mathes
and Christoph
Steinbach | | | | | | | | | caNanoLab: data
sharing to expedite
the use of
nanotechnology in
biomedicine | Sharon Gaheen, George W. Hinkal, Stephanie A. Morris, Michal Lijowski, Mervi Heiskanen and Juli D. Klemm | 2013 | Article | Comput
ational
Science
&
Technol
ogy | 6 | 1 | | Valid With
Restrictions | | Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab | Stephanie A.
Morris, Sharon
Gaheen,
Michael
Lijowski, Mervi
Heiskanen and
Juli Klemm | 2015 | Article | Beilstei
n
Journal
of
Nanote
chnolog
y | 6 | | 1580-
1593 | Valid With
Restrictions | | ISA-TAB-Nano: a specification for sharing nanomaterial research data in spreadsheet-based format | Thomas D.G., Gaheen S., Harper S.L., Fritts M., Klaesing F., Hahn-Dantona E., Paik D., Pan S., Stafford G.A., Freund E.T., Klemm J.D. and Baker N.A. | 2013 | Article | BMC
Biotech
nology | 13 | 2 | | Valid With
Restrictions | | NanoMiner | Nanommune
project
(European
Union FP7) | 2007-
2013 | Database | | | | | Valid | | NANoREG | European
Union
framework 7
Program | 2007-
2013 | Project
Reports | | | | | Valid | | NANOMATERIAL
Registry | RTI
International | 2013 | Database | | | | | Valid | | NanoE-Tox | Katre
Juganson,
Angela Ivask,
Irina Blinova,
Monika
Mortimer,
Anne Kahru | 2015 | Database | Laborat
ory of
Environ
mental
Toxicol
ogy of
NICPB
(www.k
bfi.ee) | | | | Valid | | NanoToxdb | ENVIS Centre Distributed Information Centre (DIC) on | | Database | | | | | Valid | | Title | Authors /
Source | Year | Type of source | Journal | V
ol | lss
ue | Pag | CLASSIFICA
TION | |---|---|---------------|----------------|---------|---------|-----------|-----|----------------------------| | | Toxic Chemicals (Indian Institute of Toxicology Research) | | | | | | | | | The Project on
Emerging
Nanotechnologies | Wilson Centre
(Virginia Tech) | | Database | | | | | Valid With
Restrictions | | eNanoMapper
prototype database.
A substance
database for
nanomaterial safety
information | European
Union
framework 7
Program | 2007-
2013 | Database | | | | | Valid With
Restrictions | | The Nanodatabase | DTU Environment - Danish Ecological Council - Danish Consumer Council | 2012 | Database | | | | | Valid | | Nanowerk | | | Database | | | | | No Valid | | DaNa ^{2.0} (Data and
knowledge on
Nanomaterials) | Christoph
Steinbach | | Database | | | | | Valid | | InterNano | National
Manofacturing
Network | | Database | | | | | Valid With
Restrictions | | NIL | NIOSH | 2009 | Database | | | | | No Valid | NanoMonitor Project is partially funded by the European Commission Life+ with grant agreement LIFE14 ENV/ES/000662