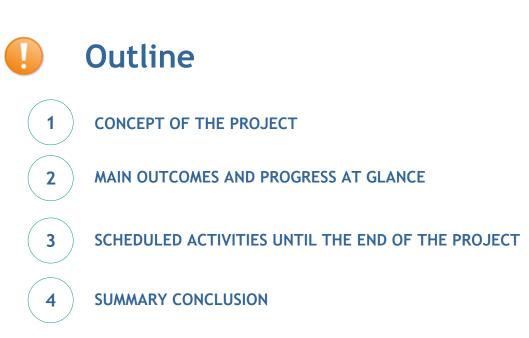


Overall view of the LIFE NanoMONITOR project

Carlos Fito López. Project Coordinator R+D Area. Nanosafety Research group -ITENE


cfito@itene.com

NanoMONITOR 4th Stakeholders´ Day. Safe Nanotechnology – Exposure Asseessment, Risk Management and Regulatory Challenges

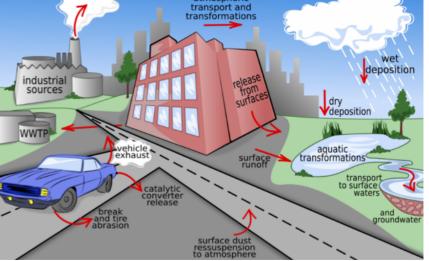
Lancaster (UK) – NanoMONITOR 4th Stakeholders' Day

1. Concept of the project

Lancaster (UK) – NanoMONITOR 4rd Stakeholders' Day

The concept of the project stems from the need of generating robust, accessible, comparable and interoperable data on the concentration of nanomaterials in workplaces and relevant outdoor environments, considering that :

- Studies conducted so far point out that a significant release of submicron sized particles, including single particles, aggregates and agglomerates (< 1000 nm) and embedded in a solid matrix (i.e. polymers), can be expected during the production and downstream use of ENMs.
- Nanostructured materials can be released into the air, soil, and water in common industrial processes and /or accidental events and ultimately accumulate in the environment.


Emission Source	NPs Type	Measured levels
	<i></i>	range
Primary / SD1		
Liquid-phase reaction	PGNP	4.0x10 ⁴ to 11.0x10 ⁶
Flame spraying	PGNP	4.7x10 ³ to 1.0x10 ⁶
CVD	PGNP	Non-significant
Top-down (milling)	ENPs / PGNP	3.0 10 ³ to 1.0x10 ⁶
Secondary NP aerosol / SD2		
Weighing of powders	ENPs	2.0X10 ⁴ to 7.0x10 ⁴
Harvesting	ENPs	2.0X10 ⁴ to 5.0x10 ⁴
Manual packaging (Bagging)	ENPs / PGNP	20.0x10 ⁴
Bag emptying of powders	ENPs	Significant increase
Melt Blending	ENPs / PGNP	> 1.0x10 ⁵
SD3a / SD3b		
Spraying of liquid	ENPs	2.0x10 ⁸
Spraying (gas)	ENPs	1.6x10 ⁵ to 2.0x10 ¹⁰
Injection Molding	ENPs	$> 8.0 \times 10^5$
Brushing and rolling	ENPs	$> 6.0 \times 10^5$
Sonication of	ENPs	$> 8.0 \times 10^{6}$
nanodispersions		
Tertiary NP aerosol / SD4		
Abrasion of nanoproducts	PM / EMNP	8.0x10 ³ to 2.0x10 ⁴
Drilling	PM / EMNP	4.0x10 ⁴
Grinding	PM / EMNP	3.0x10 ³ to 1.0x10 ⁶

1. Concept of the project

- Accidental spills during production or later transport of nanomaterials, and release from wear and tear of materials containing ENMs may lead to potential exposure in urban areas
- Incidental nanomaterials (INMs) can also be generated in outdoor urban environments by automobiles, power plants and urban based industries
- Existing evidence suggest that subway systems may be also of interest, including elevated levels of fine (PM2.5) and coarse (PM2.5 -10) particulate air pollution, as well as ultrafine particles (UFP), understood as particles smaller than 100 nm, with a chemical composition based on elements such as Fe, Mn, Si, Cr, Cu, Ba, Ca, Zn, Ni and K.

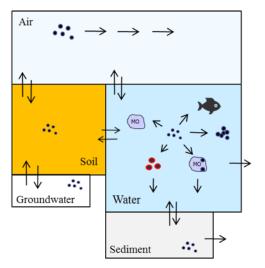
Source: Sources and pathways of outdoor urban nanomaterials in the environment (Baalousha, et al., 2016)

1. Concept of the project

Objectives

- The overall aim of the project is to develop a real-time information and monitoring system as a key innovative tool for the risk assessment of nanomaterials on a regulatory basis, in particular, REACH regulation
- The system is based on the development of an online data analysis tool for collecting and archiving data on the environmental concentration of ENMs, coupled with a newly developed prototype and low cost nanopollution monitoring system able to continuously measure key airborne nano-pollutants.

By developing these tools, NanoMONITOR promotes the use of measured data to meet information requirements laid down on REACH for human and environmental risk characterization, including environmental data and predicted exposure concentration levels (PEC).


1. Concept of the project

Specific Objectives

The specific objectives outlined in the proposal are:

- New low cost monitoring station prototype for the measure of indoor and outdoor concentrations of ENMs
- In the develop a software application to store, exchange and manage data on the concentration of ENMs.
- To design and develop standardized sampling and data analysis procedures to ensure the quality, comparability and reliability of the monitoring data used for risk assessment
- To implement and validate the NanoMONITOR integrated systems in case studies
- Support the calculation of the predicted environmental concentration (PEC) of ENMs in the context of REACH
- Transfer and disseminate the project results to a large community of SMEs and potential stakeholders

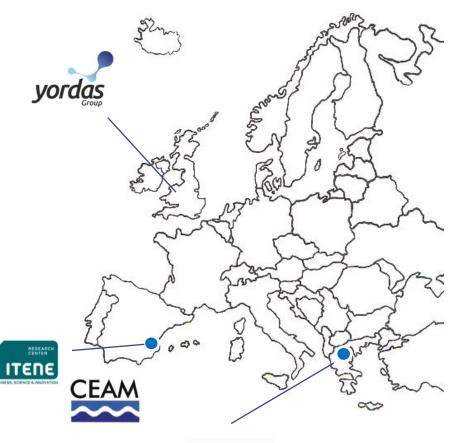
- Delivery of the NanoMONITOR software platform for the online analysis of the measured data on ENMs concentration
- Generation of robust data on the concentration of ENMs in urban environments (high traffic areas + subway) and industrial facilities covering relevant processes in the ENM life cycle
- Validate the outcomes of the project in case studies, including 4 urban areas and 4 industrial facilities
- Transference of the project results to stakeholders other than those considered in the proposal
- Iraining and dissemination of the project

1. Concept of the project

Results

The key results of the project are:

1. Concept of the project


Consortium and main roles

The consortium of the project consists of 4 organizations representing 3 main areas: Spain, Greece and UK.

Coordinating Beneficiary

Instituto tecnológico del embalaje, transporte y Logística (ITENE)

- Associated Beneficiaries:
- Fundación centro de estudios ambientales del mediterráneo (CEAM) -Spain
- Yordas Group Uk
- AXON Enviro-Group Ltd (AXON) Greece

1. Concept of the project

Scheduled activities

NanoMONITOR consists of 5 complementary actions, including:

- A. Preparatory actions
- **B.** Implementation
- C. Monitoring
- D. Communication
- E. Management

 A.1 Identification and characterization of environmentally relevant nanopollutants A.2 Definition of monitoring data information and quality requirements according REACH A.3 Information gathering and analysis of the existing environmental monitoring data A.4 Definition of the functionalities and implementation plan of the LIFE NanoMONITOR monitoring system 	B. Monitoring the impact of the project actions
 B. Implementation actions B.1 Processing of available monitoring data and development of the online environmental monitoring database B.2 Develpment of the web-based NanoMONITOR software B.3 Design of the monitoring stations and sampling devices B.4 Implementation and integration of the monitoring system in the existing remote sensing network B.5 Guidance on the sampling methods and analytical techniques for measurement and monitoring ENMs in the environment B.6 Testing and validation of the NanoMONITOR information and monitoring system by target stakeholders B.7 Training activities for end users and stakeholders 	 monitoring data under REACH C.2 Strengthening of the knowledge on the concentration of nanomaterials in air, water and soil C.3 Enhancement of the control of the environemntal concentration of nano pollutants C.4 Promotion of REACH fulfilment by implementing the LIFE NanoMONITOR project C.5 Assessment of the socio-economic impact of the project actions
D. Communication and d	issemination actions

E. Project management and monitoring

2. Main outcomes and progress at glance

Lancaster (UK) – NanoMONITOR 4th Stakeholders' Day

A. Preparatory Actions

These actions focus on the selection of environmentally relevant ENMs, the information and data quality requirements according REACH and the geographical coverage and sampling locations and frequency

Action	Action Title	Partner id	Status
A.1.	Identification and characterization of environmentally relevant nano-pollutants	ITENE	Competed
A.2	Definition of monitoring data information and quality requirements according REACH	ITENE	Competed
A.3	Information gathering and analysis of the existing environmental monitoring data	CEAM	Competed
A.4.	Definition of the functionalities and implementation plan of the LIFE NanoMONITOR monitoring system	AXON	Competed

Main outcomes are:

P1. Quality criteria to use measured data under REACH and relevant monitoring programs

P2. Procedures to determine the validity of measured data based on scoring criteria

P3. Inventory of data on the concentration of NMs in industrial, urban and environmental compartments

NanoMonitor - Overall view of the Project

			PNC (particles/cm)		
Location	Country	Year †	Max	Min	Mean
Toronto	Canada	2006 - 2011	36800	11400	
Huelva	Spain	2008 - 2009			
Barcelona	Spain	2009	29449	6140	16847
Lugano	Switzerland	2009	47562	2751	14945
North Kensington	UK	2009	27295	795	12134
Bern	Switzerland	2009	93078	8888	28032
Marylebone	UK	2009	58017	4753	22156
Huelva	Spain	2009	67949	1091	17918
a. Cruz de Tenerif	Spain	2009	26249	1076	12008
Durham (NC)	US	2008			
Augsburg	Germany	2004 - 2006	24122	5387	
Milan	Italy	2009	117600	13500	
Mol	Belgium	2007			

2. Main outcomes and progress at glance

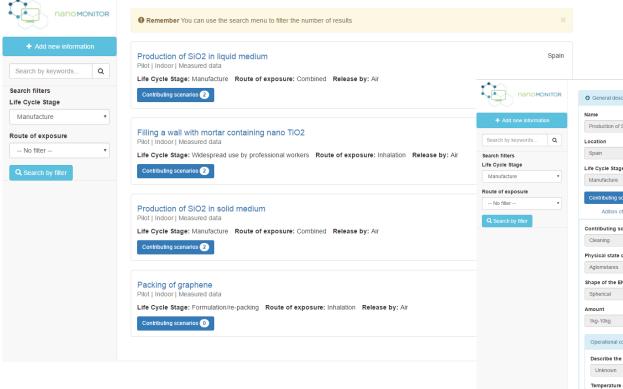
B. Implementation Actions

The implementation actions focus on the development of the real-time information and monitoring system including the development of the web-based application and the design and implementation of the autonomous monitoring station prototype.

Action Nº	WP Title	Partner id
B.1.	Development of a web based library of exposure scenarios and measured data on the exposure and release of ENMs	ITENE
B.2	Development of the web-based NanoMONITOR software application	AXON
B.3	Design of the monitoring stations and measurement devices	ITENE
В.4.	Implementation and integration of the monitoring system in the existing air quality monitoring network	CEAM
B.5.	Sampling methods and analytical techniques for the measurement and monitoring of ENMs in the environment	ITEBE
B.6.	Testing and validation of the NanoMONITOR information and monitoring system by target stakeholders	ITENE
В.7.	Training activities for end users and stakeholders	TRC

Main outcomes are:

- P1. On-line database of exposure scenarios ES Library
- P2. NanoMONITOR Software Platform
- P3. Up to 5 NanoMONITOR monitoring stations
- P4. Publication of a list of 10 well defined and standardised protocols for collecting and sampling ENMs for risk assessment purposes
- P5. New interactive guidance on the sampling methods and analytical techniques for the measurement and monitoring of ENMs in the environment



2. Main outcomes and progress at glance

□ Main outcomes per action

B1. Exposure Scenario Library

Name				Scale		
Production of SiO2 in liqui	d medium			Pilot		
Location		Environn	nental release		Type of use	
Spain		Water	r 🗹 Air 📃 Soil		Indoor Outd	ioor
Life Cycle Stage			Route of exposure		Data	
Manufacture			Combined		Measured O E	Estimate
Contributing scenario title	•				the ENM used	
Contributing scenario title				Name of	the ENM used	
Contributing scenario title	9			Name of SIO2	the ENM used	
-			Primary particle size	SIO2	the ENM used CAS Number	
Cleaning			Primary particle size	SIO2		
Cleaning Physical state of the mate		the ENM		SIO2	CAS Number	rmulatio
Cleaning Physical state of the mate Aglometares	rial	the ENM m²/g	160	SIO2	CAS Number 112926-00-8	
Cleaning Physical state of the mate Aglometares Shape of the ENM	rial Surface area of t		160 Density of the ENM	SIO2	CAS Number 112926-00-8 Concentration in fo	
Cleaning Physical state of the mate Aglometares Shape of the ENM Spherical	rial Surface area of t Freq	m²/g	160 Density of the ENM	SIO2	CAS Number 112926-00-8 Concentration in for 97	rmulatio
Cleaning Physical state of the mate Aglometares Shape of the ENM Spherical Amount 1kg-10kg	rial Surface area of t	m²/g uency (aprox.)	160 Density of the ENM	SIO2 nm kg/m ³ Duration 1min-30	CAS Number 112926-00-8 Concentration in for 97 of use / Usage Dmin/day	
Cleaning Physical state of the mate Aglometares Shape of the ENM Spherical Amount	rial Surface area of t	m²/g uency (aprox.)	160 Density of the ENM	SIO2 nm kg/m ³ Duration 1min-30	CAS Number 112926-00-8 Concentration in for 97 of use / Usage	
Cleaning Physical state of the mate Aglometares Shape of the ENM Spherical Amount 1kg-10kg Operational conditions af	rial Surface area of t	m²/g uency (aprox.) known	160 Density of the ENM Unknown	SIO2 nm kg/m ³ Duration 1min-30 Site co	CAS Number 112926-00-8 Concentration in for 97 of use / Usage Dmin/day	

2. Main outcomes and progress at glance

□ Main outcomes per action

B.1. Nano-specific environmental release categories

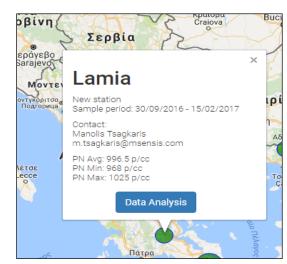
Application of ERCs (refined here to the specific case of NMs)

Stage	NRC	Air (%)	Water (%)	Soil (%)
Jiage	NRC1a	0,05619	6,74275	0,01124
	NRC1b	0,05615	6,73755	0,01124
	NRC2	0,05	0,06	0,00010
Production	NRC3	0,05	0,06	0,00010
	NRC4	5E-06	0,06	0,00010
	NRC5a	0,00562	6,74404	0,01124
	NRC5b	0,05565	6,67773	0,01113
	NRC6a	0,00561	6,72923	0,01122
	NRC6b	5,60769	6,72923	0,01122
Formulation	NRC7	5,61525	6,73829	0,01123
	NRC8	0,05	0,06	0,00010
	NRC9	0,05	0,06	0,0001
	NRC10a	0,01086	7,14956	0,57817
	NRC10b	10,86905	7,15276	0,57843
	NRC11a	0,000000	0,01	0
Manufacture	NRC11b	0	0,001	0
	NRC12	0,0010	0,0715	0,0058
	NRC13a	0,48970	32,22657	2,60610
	NRC13b	10,85635	7,14441	0,57775
	NRC14a	0	0	0
	NRC14b	4,89923	0	4,89923
	NRC15	4,19918	0	4,19918
	NRC16	0,13395	0	0
Use	NRC17a	1,8	0	1,8
0.00	NRC17b	5,0	0	5,0
	NRC18	1,8	1	
	NRC19	5,0	0	0
	NRC20	0,5	0	5,0
	NRC21	5,0	0	5,0
	NRC22	44,51640	0	0
	NRC23	0	0,12211	0
Disposal	NRC24a	0	0	14,83880
	NRC24b	0,05619	6,74275	0,01124
	NRC25	0,05615	6,73755	0,01123
	NRC26	0,056	6,74	0,011

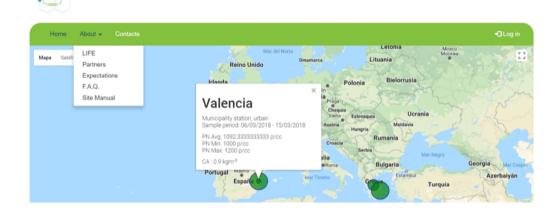
2. Main outcomes and progress at glance

B2. NanoMONITOR Software

Multiple exporting data formats


Real-time

Easy data management options, including data storage, comparative analysis and modelling



High resolution maps

Access from smartphones and tablets

Station:	Catego	ry:	Metric:	From Dat	ie:	1	o Date:	
1. Valencia 🗸	Air Qi	uality Data 🗸	CO •	01/03/2	018		19/03/2018	
Data Presentation	Statistics	Modeling	Risk					
Station ID	Location	Period		Metric	Unit	Statistic	Value	
1	Valencia	01/03/2018	- 19/03/2018	СО	mg/m3	Min		0.12143
1	Valencia	01/03/2018	- 19/03/2018	CO	mg/m3	Max	1	1.14340
1	Valencia	01/03/2018	- 19/03/2018	СО	mg/m3	Average	:	3.69643
1	Valencia	01/03/2018	- 19/03/2018	CO	mg/m3	Variance	1	B.63490
	Valencia	01/03/2018	- 19/03/2018	СО	mg/m3	Standard deviat	ion	4.31682

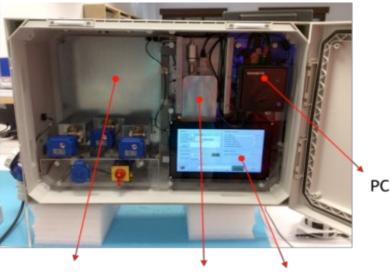
nanomonitor

B3. A Real-time Information and Monitoring System

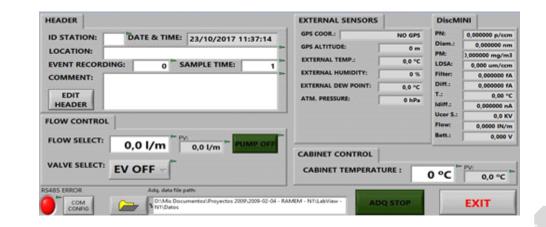
Technical Details on the Monitoring Station:

Detection of particles ranging in size from 10 to about 700 nm

Geolocated real-time information on ENM concentrations


Remotely configurable settings, readings and transmission periods

Minimum maintenance requirements



Integrated plug and play solution designed for long term sampling and monitoring ENM concentrations

Filtering / impactors

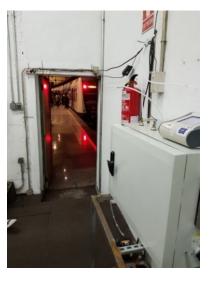
Sensor Touch screen

2. Main outcomes and progress at glance

B4. Implementation and integration of the monitoring system in the existing air quality monitoring network of the Valencian Community and relevant urban areas

Air Quality stations

- Location 1. Pista de Silla / Urban / Coordinates 39° 27' 29" N - 0° 22' 36" W, 11 m.a.s.l..
- Location 2. Paterna-CEAM / Suburban / Coordinates 39° 33' 5" N - 0° 27' 39" W, 122 m.a.s.l.
- Location 3. L´Alcora / Industrial / Coordinates 40° 03' 07" N - 0° 11' 23" W, 160 m.a.s.l.
- Location 4. Coratxar / Rural / Coordinates 40° 41' 30" N - 0° 5' 5" E, 1200 m.a.s.l.


Subway

- Metrovalencia "colon"

Train and higs density traffic are

- Alfafar 1
- Alfafar 2

	Maximum instant concentration (particles/cm ³)	Minimum instant concentration (particles/cm ³)
Suburban environment	37159	150
Urban environment	59634	384
Industrial environment	53924	223
Rural environment	3935	101
Alfafar 1 (Railway)	1499978	202
Alfafar 2 (Traffic)	512040	248
Metro station	336300	202

2. Main outcomes and progress at glance

- B5. Guidance on the sampling methods and analytical techniques for the measurement and monitoring of ENMs in the environment
 - A list of 10 well defined and standardized protocols for collecting and sampling ENMs for risk assessment purposes.
 - A new interactive guidance on the sampling methods and analytical techniques for the measurement and monitoring of ENMs in the environment.

Guidance on the sampling methods and analytical techniques for the measurement and monitoring of ENMs in the environment

ANALYSIS OF CURRENT KNOWLEDGE ON THE CONCENTRATION LEVELS OF ENMS IN INDOOR WORKPLACES AND THE ENVIRONMENT

3.1 Sources and forms of ENMs in target compartments

Alibome nanosised particles can originate from naturally occurring and incidents sources in actistism to the engineered particles (ENMs) sources typically of Interest in occupational settings. A highest exposure potential exists for workers in workplaces, where these materials are produced, used, or handled (Ababch, 2015).

The information on the concentration levels of ENMs in urban areas and/or ecosystem is still scarce, with a limited number of studies available. However, the number of published data on the levels of exposure to ENMs in the workplace has increased substantially over the last five years, including data on the particle number concentration (particles/cm3) and mass concentrations (µµ/cm3) measured using real-time measurement devices.

using reacture measurements to ences. The sources of ENMs is workplaces are related with the type of processes and work practices conducted in the industrial facilities. Schneider et al. proposed a classification based on the definition of four source domains (table 2) based on the life cycle stages, from production, downstream use, to end-of-life treatments.

The form and amount of the ENMs released in workplaces are determined by the schive presision potential and the substance emission potential. The activity emission determined the substance of the second state of the process and level of containment. Common forms of ENMs releases in workplaces include single particles and ENMs releases to workplace include single particles and arrange from 1 to 20 µm, as well as ENMs embedded into a solid matrix.

The substance emission potential can be considered specific of each ENM or nanoproduct. For ENMs in powder form, the emission potential will be determined by the dustiness of the material. In the case of colloidal dispersions containing ENMs, the concentration of the solute, diameter of dispersed ENMs, and viscosity of the mixture are key parameters influencing the emission potential.

Concerning urban areas, the study of the magnitude of the exposure to ENMs in cities is already a challenge. The main sources of release include unintentional emission from nano-anabiled products used in urban building and other infrastructures, and industrial emission that can reach the urban areas due to complex transport process in the atmosphere.

		es					
EMISSION SOURCE	RELEASE POTENTIAL	SPECIFICATIONS					
1. Point source or fugitive emissions							
Liquid-phase reactions	Likely	Single particles					
Flame spraying	Likely	Single particles					
CVD	Not Excluded	Single particles					
Top-down (milling)	Not excluded	Single particles					
2. Handling and transfer relatively low energy	of bulk manufactured	nanomaterial powders with					
Weighing of powders	Likely						
Harvesting	Likely	Single particles and					
Manual packaging (Bagging)	Ukely	aggregates < 1000nm					
Bag emptying of powders	Likely	Single particles and aggregates < 1000nm Large aggregates 1 to 20µr					
Melt Blending	Likely	Embedded particles. Limite release of fully dissociated NPs					
3. Dispersion of either (I (> 25%) nanoparticales of ready-to-use products	iquid) intermediates co r application of (relati	intaining highly concentrated rely low concentrated < 5%)					
Spraying of liquid	Very Likely	Single aggregates as well a					
Spraying (gas)	Very Likely	large aggiomerates					
Injection Molding	Very Likely	Single particles and					
Brushing and rolling	Very Likely	aggregates < 1000nm Embedded particles Limited release of fully dissociated NPs					
Sonication of nanodispersions	Very Likely	Single particles and aggregates < 1000nm					
4. Activities resulting in nanoparticles-enabled e	racturing and abrasion nd-products	of manufactured					
Abrasion of nanoproducts	Not excluded	Embedded particles, Limite					

At present, there are few studies on revealing the concentration of ENMs in uban areas, however. ENMs are currently widely incorporated in new applications and products such as building factore paintings, fuel additives, photocatalytic concrete pavements or antireflection layers for road signs and pane, which means that a bigger number of ENMs that are likely to be released in the indoor and outdoor urban environments.

The effect of wind and rain, as well other weather conditions, triggers EMMs erosion that can lead to air/ water transport and deposition, which implies a potential because to EMMs of clockers. In addition, as in function also be generated in the outdoor urban environment by automobiles, power plants and urban based industries. In this regard, IMMs can be released due to road traffic via worth avorage particle alivancer blow 300 nm (Numar et al., 2014), and compositions ranging from metals and therail acidise to phosphates. These IMM contribute to a negliciple portion of the total mass of particulate matter particle number followscholds at al., 2011).

Rait traffic is also a potential source of NMs, being mainly generated by the motion of trains movements and activities of commuters and subway staff, air ventilation motivations statutionary processes (Wonie Ferreira, 2016). In the second statution of the second statution of the wheels, rail, and brakes can generate coarse and fine generated via the high semperature of friction at interface generated via the high semperature of friction at interface of the substrate (Sundh et al., 2007).

As an example, the levels of ultrafting particles measured with a condension particle counter (CPC, TSI model 3007) reached an average value of 14.200 pt/cm3 for the metro systems of Toronto, Montreal, and Vancouver, in Canada (Van Pysovic K, et al., 2017), in the subways system of Heisenik, UPF concentration reached levels rather similar to those in outdoor ambient air (31.000 pt/ cm3).

A non-exhaustive list of the sources and types of ENMs in urban system is depicted in table 3. Table 3. Examples of emission sources and types of ENMs

Guidance for ENMs

SOURCE	EMISSION TYPE	MAIN USES OF ENMs	
Nano-enabled products	Unintended releases during use	Metal and Metal Oxides (Ag, Cu, TID2, ZnO, SIO2, CuO) Carbonacecus materials (Craphene) ENM particles heteroaggregated with background aerosols	
Industrial emissions (Wet/dry atmospheric deposition in cities)	Direct release and transportation	Metal and Metal Oxides (Ag, Cu, TIO2, ZnO, SIO2, CuO)	
Industrial emissions	Direct release and transportation	ENM particles heteroaggregated with background aerosols	
Road Traffic			
Brakes/tires abrasion			
Engine combustion exhaust	Direct releases of Incidental Nanomaterials	SIO2, CeO2, Zn, Mn, Fe, Co, NI, Cd and	
Resuspension	(INMs)	Pb	
Rail Traffic			
Brakes/tires abrasion	Direct minanes	0.0	
Resuspension	of Incidental Nanomaterials (INMs)	Al, Ba, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, I, Pb, S, SI, Ti and Zn	

in urban areas

3. Scheduled activities until the end of the project

Lancaster (UK) – NanoMONITOR 4th Stakeholders' Day

On the basis of the timescale of the project, all the actions will have started, and it's expected to complete actions B4 to B7, C2 to C5, and dissemination actions.

Main activities to be completed

B4. Monitoring activities in Lancaster (UK) in October and Thessaloniki (Greece) in November

B5. Publication of the interactive "multimedia" guideline in the project web site by November

B6. Cases studies to test and validate the monitoring systemin industrial sites

B7. Training activities

C2/C3. Continuous monitoring of the data generated

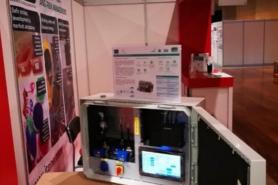
C5. Complete the socio-economic impact analysis following performance indicators

E. Development of the After LIFE implementation plan, including a monitoring activities and dissemination actios

CERASA

4. Summary conclusions

NanoMONITOR – NanoMONITOR 3rd Stakeholders' Day



4. Summary conclusions

Promising after LIFE plan, with interest from ٠ local authorities in sampling PM0.1 and PM1 nano-pollutants.

Implementation phase on going, including the installation of the stations in up to 9 strategic locations to gather relevant data on ENMs concentration, size and chemical nature.

- and EU cluster meetings.
- Dissemination conducted at all scales, from local to ٠ international events, including conferences, workshops
- installed in several scenarios to generate a large amount of data (> 1 million values for urban environments available).

NanoMonitor - Overall view of the Progress so far

5 monitoring stations have been developed, being

Thank you for your attention i

NanoMONITOR – NanoMONITOR 3rd Stakeholders' Day

